HELLENIC REPUBLIC
UNIVERSITY OF IOANNINA

Uber & Big Data

a case study

Christos Gogos
11/5/2020

https://github.com/chgogos/big data

https://github.com/chgogos/big_data

Uber

* Founded at 2009 by Travis Kalanick
and Garrett Camp

* Peer to peer ridesharing, taxi cab,
food delivery, bicycle sharing

* Uber's services and mobile app
officially launched in San Francisco
in 2011

e Operations in 785 metropolitan
areas worldwide (Sept. 2018)

e 12000+ employees

Petabytes

e Uber relies heavily on making data-driven decisions at every level
* Forecasting rider demand during high traffic events
» Addressing bottlenecks in driver-partner signup process

* Need for store, clean and serve over 100 Petabytes of data (2017)
with minimum latency.

* Need for a big data solution:
* Reliable
* Scalable
* Easy to use
* Fast
 Efficient

PostgreSQL/ MySQL PostgreSQL/ MySQL

Data size: ~100GB to a few TB
Latency: very fast since data is stored in an online transactional DB

Generation O (prior
to 2014)

e data size = few terabytes
 latency < 1 min

* Online Transaction Processing (OLTP)
databases
* MySQL
* PostgreSQL

* No global view of all stored data

* Soon, the exponential growth of
the company led the build of an
analytical data warehouse

» City operations teams (thousands of users)
On-the-ground crews that manage and scale
Uber’s transportation network in each market.
Access data on a regular basis to respond to
driver-and-rider-specific issues

» Data scientists and analysts (hundreds of
b users)
. Analysts and scientists spread across different
D ata users ' | functional groups that need data to help
' deliver high level transportation and delivery
experiences to the users (e.g. forecasting rider
demand)

* Engineering teams (hundreds of users)
Engineers focused on building automated data
applications, such as Fraud Detection and
Driver Onboarding platforms

Generation 1 (2014-2015)

e Vertica: data warehouse software
(column oriented)

Generation 1 (2014-2015) - The beginning of Big Data at Uber e Extract Transform Load (ETL)
AWS S3 - Vertica

EMR A’."’"E?E‘(’Jgjge.mg OLTP databases = Vertica
. ity Ops

e Machine Learning
e Experiments

Logs > Vertica

f f Vertica

N (Data Warehouse) * Online query system using SQL
ey-Val DBs Ad hoc Analytics: . .
i < amom (city operators could easily
Generation 1 (2014-2015) e Data Scientists . . .
- * Data size: ~10s TB interact with the data without
Latency: 24hrs - 48hrs . .
knowing about the underlying
technologies)

P

b4
RDBMS DBs

* Global view of data was achieved

Generation 1 (2014-2015)

e Data Size = 10s of terabytes

e # users = several hundreds

Limitations of

Generation 1

(L

Data (in JSON format) was ingested
through ad hoc ETL jobs - data
reliability became an issue

Lack of a formal schema
communication mechanism =2
duplicate data

Expensive scaling

Hadoop data lake (all raw data was ingested
from different online data stores only once
and with no transformation during

ingestion)
* Access data
* Presto: interactive ad hoc user queries
Generation 2 (2015-2016) - The arrival of Hadoop * Apache Spark: programmatic access to

Generation 2 (2015-2016)

Applications:) raw data
— S Gyom * Apache Hive: heavy queries
(Flattened/ Modeled Tables) . I\Eﬂ:::r'ir::eﬁsammg . .
l T * All data quelmg and transformation only
o sonems | 4 | [iverspons happened in Hadoop
= eS| poaet asoop | | Notebooks Critical tables were transferred to the data
Sharded) Flattened/{Modeled - warehouse
Pt Tables (regent data) Ad hoc Analytics: . .
== > Daia Scentss * quick SQL queries
Generation 2 (2015-2016) e |lower Operational cost

Data size: ~10 PB
Latency: 24hrs

~
RDBMS DBs

* Transition from JSON to Apache Parquet
* higher compression
* integration with Apache Spark

Generation 2 (2015-2016)

e Data Size = 10s of petabytes
 Data platform = 10,000 vcores, 100,000 running batch jobs / day
* # users = thousands

Limitations of Generation 2

 Massive amount of small files stored in
HDFS = pressure on HDFS NameNodes

Generation 2 (2015-2016) - The arrival of Hadoop * New data was accessible to users once
every 24 hours = no real-time

Why does data latency remain at 24 hours? T
decisions

ETL
(Flattened/Modeled Tables)
Snapshot-based ingestion: A

Jan 2016: 6 hrs (500 executors) Batch recompute:
Aug 2016: 10hrs (1000 executors) 8-10 hrs

 HDFS and Parquet do not support data
updates (all ingestion jobs needed to
create new snapshots from the
updated source data)

* ingest the new snapshot into

\

“ Hive/Spark/
— - '// —> Presto/
Parquet Notebooks

Ingestion
(Batch)

Ingestion

(Streaming) Generation 2 (2015-2016)
Data size: ~10 PB Hadoop
Key-Val DEBs (Sharded) Latency: 24hrs « convert it into Parquet format

E2E data latency:
18-24 hours

* swap the output tables
* view the new data

Pain points In
genz,
solutions
adopted in
gen3

HDFS scalability limitation: HDFS is bottlenecked by its
NameNode capacity (if data size > 50-100 PB)

Solution: control number of small files, move data to
separate clusters

Faster data in Hadoop: 24-hr data latency

e Solution: incremental ingestion of only updated and
new data

Support of updates and deletes in Hadoop and Parquet: ingest all
updates at one time, once per day

 Solution: framework to support update/delete operations
over HDFS
Faster ETL and modeling: rebuild derived tables in every run

* Solution: pull out only the changed data from the raw source
table, update the previous derived output table

* Developed by Uber engineering in order to support
Generation 3

* Open source Spark library that provides an abstraction
layer on top of HDFS and Parquet to support the

required update and delete operations

H U d | (H d d OO0 p * Allows data users to incrementally pull out only changed

data

* Data users pass on their last checkpoint timestamp
and retrieve all the records that have been updated
since (without scanning the entire source table)

* Snapshot-based ingestion of raw data to an
incremental ingestion model:
data latency 24 hours = < 1 hour

Upserts anD
Incremental)

Generation 3
(2017 —

oresent)

Ingestion Spark jobs run every
10-15 minutes, providing a 30-
minute raw data latency in
Hadoop

Generation 3 (2017-present) - Let’s rebuild for long term

Incremental ingestion:

ETL
(Flattened/Modeled Tables)

Incremental ingestion:

A

A
<30 min

<

<30min to get in new data/updates

Key-Val DBs

(Sharded) Ingestion
(Batch)

>

Incremental

Y

Pl

Hive/Spark/
—> Presto/
Notebooks

Parquet

Hudi

Generation 3 (2017-present)
Data size: ~100 PB

Latency: <30min raw data
<1 hr modeled

RDBMS DBs E2E Fresh data ingestion:
4 <30 min for raw data Tables -
- <1 hour for Modeled Tables -

Generation 3 (2017-...)

e Data Size = 100 PB data in Hadoop
* Data platform = 100,000 vcores

e ~ 100,000 Presto queries / day

e ~ 10,000 Spark jobs / day

e ~ 20,000 Hive queries / day

* Improved data quality through
semantic checks

* Improved data latency (5 minutes)

GeneratiOﬂ 4 * New version of Hudi
e Generate larger parquet files (1GB
: vs 128MB)

* Improve management of updates
on parquet files through deltas

(future work)

* https://eng.uber.com/

Refe rences * https://eng.uber.com/uber-big-data-platform/
* https://eng.uber.com/hoodie/

https://eng.uber.com/uber-big-data-platform/
https://eng.uber.com/uber-big-data-platform/
https://eng.uber.com/hoodie/

