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Uber

• Founded at 2009 by Travis Kalanick 
and Garrett Camp

• Peer to peer ridesharing, taxi cab, 
food delivery, bicycle sharing

• Uber's services and mobile app 
officially launched in San Francisco 
in 2011 

• Operations in 785 metropolitan 
areas worldwide (Sept. 2018)
• 12000+ employees



Petabytes

• Uber relies heavily on making data-driven decisions at every level
• Forecasting rider demand during high traffic events
• Addressing bottlenecks in driver-partner signup process

• Need for store, clean and serve over 100 Petabytes of data (2017) 
with minimum latency.

• Need for a big data solution:
• Reliable
• Scalable
• Easy to use
• Fast 
• Efficient



Generation 0 (prior 
to 2014)

• data size = few terabytes

• latency < 1 min

• Online Transaction Processing (OLTP) 
databases
• MySQL
• PostgreSQL

• No global view of all stored data
• Soon, the exponential growth of 

the company led the build of an 
analytical data warehouse



Data users

• City operations teams (thousands of users)
On-the-ground crews that manage and scale 
Uber’s transportation network in each market. 
Access data on a regular basis to respond to 
driver-and-rider-specific issues

• Data scientists and analysts (hundreds of 
users)
Analysts and scientists spread across different 
functional groups that need data to help 
deliver high level transportation and delivery 
experiences to the users (e.g. forecasting rider 
demand)

• Engineering teams (hundreds of users)
Engineers focused on building automated data 
applications, such as Fraud Detection and 
Driver Onboarding platforms



Generation 1 (2014-2015)

• Vertica: data warehouse software 
(column oriented)

• Extract Transform Load (ETL)

• AWS S3 → Vertica

• OLTP databases → Vertica

• Logs → Vertica

• …

• Online query system using SQL
(city operators could easily 
interact with the data without 
knowing about the underlying 
technologies)

• Global view of data was achieved



Generation 1 (2014-2015)

• Data Size =  10s of terabytes

• # users = several hundreds



Limitations of 
Generation 1

Data (in JSON format) was ingested 
through ad hoc ETL jobs → data 
reliability became an issue

Lack of a formal schema 
communication mechanism →
duplicate data

Expensive scaling



Generation 2 (2015-2016)• Hadoop data lake (all raw data was ingested 
from different online data stores only once 
and with no transformation during 
ingestion)

• Access data
• Presto: interactive ad hoc user queries
• Apache Spark: programmatic access to 

raw data
• Apache Hive: heavy queries

• All data modeling and transformation only 
happened in Hadoop

• Critical tables were transferred to the data 
warehouse 
• quick SQL queries 
• lower operational cost

• Transition from JSON to Apache Parquet 
• higher compression
• integration with Apache Spark



Generation 2 (2015-2016)

• Data Size =  10s of petabytes

• Data platform = 10,000 vcores, 100,000 running batch jobs / day

• # users = thousands



Limitations of Generation 2
• Massive amount of small files stored in 

HDFS → pressure on HDFS NameNodes

• New data was accessible to users once 
every 24 hours → no real-time 
decisions

• HDFS and Parquet do not support data 
updates (all ingestion jobs needed to 
create new snapshots from the 
updated source data)

• ingest the new snapshot into 
Hadoop

• convert it into Parquet format 

• swap the output tables 

• view the new data



Pain points in 
gen2, 

solutions 
adopted in 

gen3

• HDFS scalability limitation: HDFS is bottlenecked by its 
NameNode capacity (if data size > 50-100 PB)

Solution: control number of small files, move data to 
separate clusters

• Faster data in Hadoop: 24-hr data latency

• Solution: incremental ingestion of only updated and 
new data

• Support of updates and deletes in Hadoop and Parquet: ingest all 
updates at one time, once per day

• Solution: framework to support update/delete operations 
over HDFS

• Faster ETL and modeling: rebuild derived tables in every run

• Solution: pull out only the changed data from the raw source 
table, update the previous derived output table 



Hudi (Hadoop 
Upserts anD 
Incremental)

• Developed by Uber engineering in order to support 
Generation 3

• Open source Spark library that provides an abstraction 
layer on top of HDFS and Parquet to support the 
required update and delete operations

• Allows data users to incrementally pull out only changed 
data

• Data users pass on their last checkpoint timestamp 
and retrieve all the records that have been updated 
since (without scanning the entire source table)

• Snapshot-based ingestion of raw data to an 
incremental ingestion model:
data latency 24 hours → < 1 hour



Generation 3 
(2017 –
present)

Ingestion Spark jobs run every 
10-15 minutes, providing a 30-

minute raw data latency in 
Hadoop



Generation 3 (2017-…)

• Data Size = 100 PB data in Hadoop

• Data platform = 100,000 vcores

• ~ 100,000 Presto queries / day

• ~ 10,000 Spark jobs / day

• ~ 20,000 Hive queries / day



Generation 4 
(future work)

• Improved data quality through 
semantic checks

• Improved data latency (5 minutes)

• New version of Hudi

• Generate larger parquet files (1GB 
vs 128MB)

• Improve management of updates 
on parquet files through deltas
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