
Uber & Big Data
a case study

Christos Gogos

11/5/2020

https://github.com/chgogos/big_data

https://github.com/chgogos/big_data

Uber

• Founded at 2009 by Travis Kalanick
and Garrett Camp

• Peer to peer ridesharing, taxi cab,
food delivery, bicycle sharing

• Uber's services and mobile app
officially launched in San Francisco
in 2011

• Operations in 785 metropolitan
areas worldwide (Sept. 2018)
• 12000+ employees

Petabytes

• Uber relies heavily on making data-driven decisions at every level
• Forecasting rider demand during high traffic events
• Addressing bottlenecks in driver-partner signup process

• Need for store, clean and serve over 100 Petabytes of data (2017)
with minimum latency.

• Need for a big data solution:
• Reliable
• Scalable
• Easy to use
• Fast
• Efficient

Generation 0 (prior
to 2014)

• data size = few terabytes

• latency < 1 min

• Online Transaction Processing (OLTP)
databases
• MySQL
• PostgreSQL

• No global view of all stored data
• Soon, the exponential growth of

the company led the build of an
analytical data warehouse

Data users

• City operations teams (thousands of users)
On-the-ground crews that manage and scale
Uber’s transportation network in each market.
Access data on a regular basis to respond to
driver-and-rider-specific issues

• Data scientists and analysts (hundreds of
users)
Analysts and scientists spread across different
functional groups that need data to help
deliver high level transportation and delivery
experiences to the users (e.g. forecasting rider
demand)

• Engineering teams (hundreds of users)
Engineers focused on building automated data
applications, such as Fraud Detection and
Driver Onboarding platforms

Generation 1 (2014-2015)

• Vertica: data warehouse software
(column oriented)

• Extract Transform Load (ETL)

• AWS S3 → Vertica

• OLTP databases → Vertica

• Logs → Vertica

• …

• Online query system using SQL
(city operators could easily
interact with the data without
knowing about the underlying
technologies)

• Global view of data was achieved

Generation 1 (2014-2015)

• Data Size = 10s of terabytes

• # users = several hundreds

Limitations of
Generation 1

Data (in JSON format) was ingested
through ad hoc ETL jobs → data
reliability became an issue

Lack of a formal schema
communication mechanism →
duplicate data

Expensive scaling

Generation 2 (2015-2016)• Hadoop data lake (all raw data was ingested
from different online data stores only once
and with no transformation during
ingestion)

• Access data
• Presto: interactive ad hoc user queries
• Apache Spark: programmatic access to

raw data
• Apache Hive: heavy queries

• All data modeling and transformation only
happened in Hadoop

• Critical tables were transferred to the data
warehouse
• quick SQL queries
• lower operational cost

• Transition from JSON to Apache Parquet
• higher compression
• integration with Apache Spark

Generation 2 (2015-2016)

• Data Size = 10s of petabytes

• Data platform = 10,000 vcores, 100,000 running batch jobs / day

• # users = thousands

Limitations of Generation 2
• Massive amount of small files stored in

HDFS → pressure on HDFS NameNodes

• New data was accessible to users once
every 24 hours → no real-time
decisions

• HDFS and Parquet do not support data
updates (all ingestion jobs needed to
create new snapshots from the
updated source data)

• ingest the new snapshot into
Hadoop

• convert it into Parquet format

• swap the output tables

• view the new data

Pain points in
gen2,

solutions
adopted in

gen3

• HDFS scalability limitation: HDFS is bottlenecked by its
NameNode capacity (if data size > 50-100 PB)

Solution: control number of small files, move data to
separate clusters

• Faster data in Hadoop: 24-hr data latency

• Solution: incremental ingestion of only updated and
new data

• Support of updates and deletes in Hadoop and Parquet: ingest all
updates at one time, once per day

• Solution: framework to support update/delete operations
over HDFS

• Faster ETL and modeling: rebuild derived tables in every run

• Solution: pull out only the changed data from the raw source
table, update the previous derived output table

Hudi (Hadoop
Upserts anD
Incremental)

• Developed by Uber engineering in order to support
Generation 3

• Open source Spark library that provides an abstraction
layer on top of HDFS and Parquet to support the
required update and delete operations

• Allows data users to incrementally pull out only changed
data

• Data users pass on their last checkpoint timestamp
and retrieve all the records that have been updated
since (without scanning the entire source table)

• Snapshot-based ingestion of raw data to an
incremental ingestion model:
data latency 24 hours → < 1 hour

Generation 3
(2017 –
present)

Ingestion Spark jobs run every
10-15 minutes, providing a 30-

minute raw data latency in
Hadoop

Generation 3 (2017-…)

• Data Size = 100 PB data in Hadoop

• Data platform = 100,000 vcores

• ~ 100,000 Presto queries / day

• ~ 10,000 Spark jobs / day

• ~ 20,000 Hive queries / day

Generation 4
(future work)

• Improved data quality through
semantic checks

• Improved data latency (5 minutes)

• New version of Hudi

• Generate larger parquet files (1GB
vs 128MB)

• Improve management of updates
on parquet files through deltas

References
• https://eng.uber.com/

• https://eng.uber.com/uber-big-data-platform/

• https://eng.uber.com/hoodie/

https://eng.uber.com/uber-big-data-platform/
https://eng.uber.com/uber-big-data-platform/
https://eng.uber.com/hoodie/

