Uber & Big Data
a case study

Christos Gogos
11/5/2020

https://github.com/chgogos/big_data
Uber

- Founded at 2009 by Travis Kalanick and Garrett Camp
- Peer to peer ridesharing, taxi cab, food delivery, bicycle sharing
- Uber's services and mobile app officially launched in San Francisco in 2011
- Operations in 785 metropolitan areas worldwide (Sept. 2018)
 - 12000+ employees
Petabytes

• Uber relies heavily on making data-driven decisions at every level
 • Forecasting rider demand during high traffic events
 • Addressing bottlenecks in driver-partner signup process
• Need for store, clean and serve over 100 Petabytes of data (2017) with minimum latency.
• Need for a big data solution:
 • Reliable
 • Scalable
 • Easy to use
 • Fast
 • Efficient
Generation 0 (prior to 2014)

- data size = few terabytes
- latency < 1 min
- Online Transaction Processing (OLTP) databases
 - MySQL
 - PostgreSQL
- No global view of all stored data
- Soon, the exponential growth of the company led the build of an analytical data warehouse
• **City operations teams (thousands of users)**
 On-the-ground crews that manage and scale Uber’s transportation network in each market. Access data on a regular basis to respond to driver-and-rider-specific issues

• **Data scientists and analysts (hundreds of users)**
 Analysts and scientists spread across different functional groups that need data to help deliver high level transportation and delivery experiences to the users (e.g. forecasting rider demand)

• **Engineering teams (hundreds of users)**
 Engineers focused on building automated data applications, such as Fraud Detection and Driver Onboarding platforms

- Vertica: data warehouse software (column oriented)
- Extract Transform Load (ETL)
 - AWS S3 → Vertica
 - OLTP databases → Vertica
 - Logs → Vertica
 - ...
- Online query system using SQL (city operators could easily interact with the data without knowing about the underlying technologies)
- Global view of data was achieved

• Data Size = 10s of terabytes
• # users = several hundreds
Limitations of Generation 1

- Data (in JSON format) was ingested through ad hoc ETL jobs → data reliability became an issue
- Lack of a formal schema communication mechanism → duplicate data
- Expensive scaling
Generation 2 (2015-2016)

- **Hadoop data lake** (all raw data was ingested from different online data stores only once and with no transformation during ingestion)
 - Access data
 - Presto: interactive ad hoc user queries
 - Apache Spark: programmatic access to raw data
 - Apache Hive: heavy queries
 - All data modeling and transformation only happened in Hadoop
 - Critical tables were transferred to the data warehouse
 - quick SQL queries
 - lower operational cost
 - Transition from JSON to Apache Parquet
 - higher compression
 - integration with Apache Spark
Generation 2 (2015-2016)

• Data Size = 10s of petabytes
• Data platform = 10,000 vcores, 100,000 running batch jobs / day
• # users = thousands
Limitations of Generation 2

- Massive amount of small files stored in HDFS → pressure on HDFS NameNodes
- New data was accessible to users once every 24 hours → no real-time decisions
- HDFS and Parquet do not support data updates (all ingestion jobs needed to create new snapshots from the updated source data)
 - ingest the new snapshot into Hadoop
 - convert it into Parquet format
 - swap the output tables
 - view the new data
Pain points in gen2, solutions adopted in gen3

- **HDFS scalability limitation**: HDFS is bottlenecked by its NameNode capacity (if data size > 50-100 PB)
 - **Solution**: control number of small files, move data to separate clusters

- **Faster data in Hadoop**: 24-hr data latency
 - **Solution**: incremental ingestion of only updated and new data

- **Support of updates and deletes in Hadoop and Parquet**: ingest all updates at one time, once per day
 - **Solution**: framework to support update/delete operations over HDFS

- **Faster ETL and modeling**: rebuild derived tables in every run
 - **Solution**: pull out only the changed data from the raw source table, update the previous derived output table
Hudi (Hadoop Upserts and Incremental)

- Developed by Uber engineering in order to support Generation 3
- Open source Spark library that provides an abstraction layer on top of HDFS and Parquet to support the required update and delete operations
- Allows data users to incrementally pull out only changed data
 - Data users pass on their last checkpoint timestamp and retrieve all the records that have been updated since (without scanning the entire source table)
 - Snapshot-based ingestion of raw data to an incremental ingestion model:
 data latency 24 hours \rightarrow < 1 hour
Generation 3 (2017–present)

Ingestion Spark jobs run every 10-15 minutes, providing a 30-minute raw data latency in Hadoop.

Generation 3 (2017-present) - Let's rebuild for long term

Incremental ingestion:

- Key-Val DBs (Sharded)
- Kafka
- ETL (Flattened/Modeled Tables)
- RDBMS DBs

ETL: Incremental Pull
- Incremental ingestion: <30 min to get new data
- <30 min

E2E Fresh data ingestion:
- <30 min for raw data Tables
- <1 hour for Modeled Tables

Data size: ~100 PB
Latency: <30 min raw data
<1 hr modeled
Generation 3 (2017-...)

- Data Size = 100 PB data in Hadoop
- Data platform = 100,000 vcores
- ~ 100,000 Presto queries / day
- ~ 10,000 Spark jobs / day
- ~ 20,000 Hive queries / day
Generation 4 (future work)

- Improved data quality through semantic checks
- Improved data latency (5 minutes)
- New version of Hudi
 - Generate larger parquet files (1GB vs 128MB)
 - Improve management of updates on parquet files through deltas
References

- https://eng.uber.com/
- https://eng.uber.com/uber-big-data-platform/
- https://eng.uber.com/hoodie/