
© 2018 OpenMP ARB OMP1118-02-OMP5

OpenMP API 5.0 Page 1

OpenMP 5.0 API Syntax Reference Guide

®

Directives and Constructs
An OpenMP executable directive applies to the succeeding structured block. A structured-block is an OpenMP construct or a block of executable statements with a single entry at
the top and a single exit at the bottom. OpenMP directives except SIMD and declare target directives may not appear in PURE or ELEMENTAL procedures.

variant directives
Metadirectives [2.3.4]
A directive that can specify multiple directive variants of
which one may be conditionally selected to replace the
metadirective based on the enclosing OpenMP context.

C/
C+

+

#pragma omp metadirective [clause[[,] clause] ...]
- or -

#pragma omp begin metadirective [clause[[,] clause] ...]
stmt(s)

#pragma omp end metadirective

Fo
r

!$omp metadirective [clause[[,] clause] ...]
- or -

!$omp begin metadirective [clause[[,] clause] ...]
stmt(s)

!$omp end metadirective
clause:

when (context-selector-specification: [directive-variant])
default (directive-variant)

declare variant [2.3.5]
Declares a specialized variant of a base function and the
context in which it is used.

C/
C+

+

#pragma omp declare variant(variant-func-id) clause
[#pragma omp declare variant(variant-func-id) clause]
[...]

function definition or declaration

Fo
r !$omp declare variant (&

[base-proc-name:]variant-proc-name) clause

clause:
match (context-selector-specification)

variant-func-id: C/C++
The name of a function variant that is a base
language identifier, or, for C++, a template-id.

variant-proc-name: For
The name of a function variant that is a base
language identifier.

requires directive
requires [2.4]
Specifies the features an implementation must provide in
order for the code to compile and to execute correctly.

C/
C+

+

#pragma omp requires clause [[[,] clause] ...]

Fo
r

!$omp requires clause [[[,] clause] ...]

clause:
reverse_offload
unified_address
unified_shared_memory
atomic_default_mem_order(seq_cst | acq_rel | relaxed)
dynamic_allocators

parallel construct
parallel [2.6] [2.5]
Creates a team of OpenMP threads that execute the
region.

C/
C+

+ #pragma omp parallel [clause[[,]clause] ...]
structured-block

Fo
r !$omp parallel [clause[[,]clause] ...]

structured-block
!$omp end parallel

clause:
private (list), firstprivate (list), shared (list)
copyin (list)
reduction ([reduction-modifier,] reduction-identifier: list)
proc_bind (master | close | spread)
allocate ([allocator :]list)

C/C++ if ([parallel :] scalar-expression)
C/C++ num_threads (integer-expression)
C/C++ default (shared | none)
For if ([parallel :] scalar-logical-expression)
For num_teams (scalar-integer-expression)
For default (shared | firstprivate | private | none)

teams construct
teams [2.7] [2.10.7]
Creates a league of thread teams where the master thread
of each team executes the region.

C/
C+

+ #pragma omp teams [clause[[,]clause] ...]
 structured-block

Fo
r !$omp teams [clause[[,]clause] ...]

structured-block
!$omp end teams

clause:
private (list), firstprivate (list), shared (list)
reduction ([default ,] reduction-identifier : list)
allocate ([allocator :]list)

C/C++ num_teams (integer-expression)
C/C++ thread_limit (integer-expression)
C/C++ default (shared | none)
For num_teams (scalar-integer-expression)
For thread_limit (scalar-integer-expression)
For default (shared | firstprivate | private | none)

Worksharing constructs
sections [2.8.1] [2.7.2]
A noniterative worksharing construct that contains a set
of structured blocks that are to be distributed among and
executed by the threads in a team.

C/
C+

+

#pragma omp sections [clause[[,] clause] ...]
{
[#pragma omp section]
 structured-block
[#pragma omp section
 structured-block]

 ...
}

Fo
r

!$omp sections [clause[[,] clause] ...]
[!$omp section]
 structured-block
[!$omp section
 structured-block]
...

!$omp end sections [nowait]

clause:
private (list), firstprivate (list)
lastprivate ([lastprivate-modifier:] list)
reduction ([reduction-modifier,] reduction-identifier: list)
allocate ([allocator :]list)

C/C++ nowait

single [2.8.2] [2.7.3]
Specifies that the associated structured block is executed
by only one of the threads in the team.

C/
C+

+ #pragma omp single [clause[[,]clause] ...]
structured-block

Fo
r !$omp single [clause[[,]clause] ...]

structured-block
!$omp end single [end_clause[[,]end_clause] ...]

clause:
private (list), firstprivate (list)
allocate ([allocator :]list)

C/C++ copyprivate (list)
C/C++ nowait
end_clause: For

copyprivate (list), nowait

workshare [2.8.3] [2.7.4]
Divides the execution of the enclosed structured block
into separate units of work, each executed only once by
one thread.

Fo
r !$omp workshare

structured-block
!$omp end workshare [nowait]

Worksharing-loop construct
for / do [2.9.2] [2.7.1]
Specifies that the iterations of associated loops will be
executed in parallel by threads in the team.

C/
C+

+ #pragma omp for [clause[[,]clause] ...]
for-loops

Fo
r !$omp do [clause[[,]clause] ...]

do-loops
[!$omp end do [nowait]]

clause:
private (list), firstprivate (list)
lastprivate ([lastprivate-modifier:] list)
linear (list[: linear-step])
schedule ([modifier [, modifier] :] kind[, chunk_size])
collapse (n), ordered [(n)]
allocate ([allocator :]list)
order (concurrent)

C/C++ reduction ([reduction-modifier,] reduction-identifier: list)
C/C++ nowait
kind:

• static: Iterations are divided into chunks of size
chunk_size and assigned to threads in the team in
round-robin fashion in order of thread number.

• dynamic: Each thread executes a chunk of iterations
then requests another chunk until none remain.

• guided: Each thread executes a chunk of iterations
then requests another chunk until no chunks remain
to be assigned. Chunk size is different for each chunk,
with each successive chunk smaller than the last.

openmp.org

The OpenMP® API is a portable, scalable
model that gives parallel programmers a
simple and flexible interface for developing
portable parallel applications in C/C++ and

Fortran. OpenMP is suitable for a wide range
of algorithms running on multicore nodes and
chips, NUMA systems, GPUs, and other such
devices attached to a CPU.

Functionality new/changed in OpenMP 5.0 is in this color, and in OpenMP 4.5 is in this color.
[n.n.n] Sections in the 5.0 spec. [n.n.n] Sections in the 4.5 spec. • Deprecated in the 5.0 spec. C/

C+
+

C/C++ content Fo
r

Fortran content

Continued4

Page 2 OpenMP API 5.0

© 2018 OpenMP ARB OMP1118-02-OMP5

Directives and Constructs (continued)

• auto: The decision regarding scheduling is delegated
to the compiler and/or runtime system.

• runtime: The schedule and chunk size are taken from
the run-sched-var ICV.

modifier:
• monotonic: Each thread executes the chunks that

it is assigned in increasing logical iteration order.
Default for static schedule.

• nonmonotonic: Chunks are assigned to threads
in any order and the behavior of an application
that depends on execution order of the chunks is
unspecified. Default for all schedule kinds except
static.

• simd: Ignored when the loop is not associated with
a SIMD construct, otherwise the new_chunk_size
for all except the first and last chunks is chunk_size/
simd_width * simd_width where simd_width is an
implementation-defined value.

SIMD directives
simd [2.9.3.1] [2.8.1]
Applied to a loop to indicate that the loop can be
transformed into a SIMD loop.

C/
C+

+ #pragma omp simd [clause[[,]clause] ...]
for-loops

Fo
r !$omp simd [clause[[,]clause] ...]

do-loops
[!$omp end simd]

clause:
safelen (length), simdlen (length)
linear (list[: linear-step])
aligned (list[: alignment])
nontemporal (list)
private (list)
lastprivate ([lastprivate-modifier :] list)
reduction ([reduction-modifier,]
 reduction-identifier : list)
collapse (n)
order (concurrent)

C/C++ if ([simd :] scalar-expression)
For if ([simd :] scalar-logical-expression)

Worksharing-Loop SIMD [2.9.3.2] [2.8.3]
Applied to a loop to indicate that the loop can be
transformed into a SIMD loop that will be executed in
parallel by threads in the team.

C/
C+

+ #pragma omp for simd [clause[[,]clause] ...]
for-loops

Fo
r !$omp do simd [clause[[,]clause] ...]

do-loops
[!$omp end do simd[nowait]]

clause: Any of the clauses accepted by the simd or do
directives with identical meanings and restrictions.

declare simd [2.9.3.3] [2.8.2]
Applied to a function or a subroutine to enable the
creation of one or more versions that can process
multiple arguments using SIMD instructions from a single
invocation from a SIMD loop.

C/
C+

+

#pragma omp declare simd [clause[[,]clause] ...]

[#pragma omp declare simd [clause[[,]clause] ...]]

[...]
 function definition or declaration

Fo
r !$omp declare simd [(proc-name)] [clause[[,]clause]

...]
clause:

simdlen (length)
linear (linear-list[: linear-step])
aligned (argument-list[: alignment])
uniform (argument-list)
inbranch
notinbranch

distribute loop constructs
distribute [2.9.4.1] [2.10.8]
Specifies loops which are executed by the thread teams.

C/
C+

+ #pragma omp distribute [clause[[,]clause] ...]
for-loops

Fo
r !$omp distribute [clause[[,]clause] ...]

do-loops
[!$omp end distribute]

clause:
private (list)
firstprivate (list)
lastprivate (list)
collapse (n)
dist_schedule (kind[, chunk_size])
allocate ([allocator :]list)

distribute simd [2.9.4.2] [2.10.9]
Specifies loops which are executed concurrently using
SIMD instructions and the thread teams.

C/
C+

+ #pragma omp distribute simd [clause[[,]clause] ...]
for-loops

Fo
r !$omp distribute simd [clause[[,]clause] ...]

do-loops
[!$omp end distribute simd]

clause: Any of the clauses accepted by distribute or simd.

Distribute Parallel Worksharing-Loop
[2.9.4.3] [2.10.10]
These constructs specify a loop that can be executed in
parallel by multiple threads that are members of multiple
teams.

C/
C+

+ #pragma omp distribute parallel for [clause[[,]clause] ...]
for-loops

Fo
r !$omp distribute parallel do [clause[[,]clause] ...]

do-loops
[!$omp end distribute parallel do]

clause: Any accepted by the distribute or parallel
worksharing-loop directives with identical meanings
and restrictions.

Distribute Parallel Worksharing-Loop SIMD
[2.9.4.4] [2.10.11]
Specifies a loop that can be executed concurrently using
SIMD instructions in parallel by multiple threads that are
members of multiple teams.

C/
C+

+ #pragma omp distribute parallel for simd \
 [clause[[,]clause] ...]
for-loops

Fo
r

!$omp distribute parallel do simd [clause[[,]clause]
...]
do-loops

[!$omp end distribute parallel do simd]
clause: Any accepted by the distribute or parallel

worksharing-loop SIMD directives with identical
meanings and restrictions.

loop construct
loop [2.9.5]
Specifies that the iterations of the associated loops may
execute concurrently and permits the encountering
thread(s) to execute the loop accordingly.

C/
C+

+ #pragma omp loop [clause[[,]clause] ...]
for-loops

Fo
r !$omp loop [clause[[,]clause] ...]

do-loops
[!$omp end loop]

clause:
bind (binding)
collapse (n)
order (concurrent)
private (list)
lastprivate (list)
reduction ([default ,]reduction-identifier : list)

binding:
teams, parallel, thread

scan directive
scan [2.9.6]
Specifies that scan computations update the list items on
each iteration.

C/
C+

+

loop-associated-directive
for-loop-headers
{
 structured-block

#pragma omp scan clause
structured-block

}

Fo
r

loop-associated-directive
do-loop-headers
 structured-block
 !$omp scan clause

structured-block
do-termination-stmts(s)
[end-loop-associated-directive]

clause:
inclusive (list), exclusive (list)

loop-directive directives: C/C++
for, for simd, simd directive

[end-]loop-associated-directive directives: For
do (end do)
do simd (end do simd)
simd (end simd)

Tasking constructs
task [2.10.1] [2.9.1]
Defines an explicit task. The data environment of the task
is created according to data-sharing attribute clauses on
task construct and any defaults that apply.

C/
C+

+ #pragma omp task [clause[[,]clause] ...]
structured-block

Fo
r !$omp task [clause[[,]clause] ...]
structured-block

!$omp end task
clause:

untied, mergeable
private (list), firstprivate (list), shared (list)
in_reduction (reduction-identifier: list)
depend ([depend-modifier,] dependence-type :
 locator-list)
priority(priority-value)
allocate([allocator:]list)
affinity ([aff-modifier:] locator-list)
 - where aff-modifier is iterator(iterators-definition)
detach (event-handle)
 - where event-handle is of type omp_event_handle

C/C++ default (shared | none)
C/C++ if ([task :] scalar-expression)
C/C++ final (scalar-expression)
For default (private | firstprivate | shared | none)
For if ([task :] scalar-logical-expression)
For final (scalar-logical-expression)

taskloop [2.10.2] [2.9.2]
Specifies that the iterations of one or more associated
loops will be executed in parallel using OpenMP tasks.

C/
C+

+ #pragma omp taskloop [clause[[,]clause] ...]
for-loops

Fo
r !$omp taskloop [clause[[,]clause] ...]

do-loops
[!$omp end taskloop]

clause:
shared (list), private (list)
firstprivate (list), lastprivate (list)
reduction ([default ,] reduction-identifier : list)
in_reduction (reduction-identifier : list)
grainsize (grain-size), num_tasks (num-tasks)
collapse (n), priority (priority-value)
untied, mergeable, nogroup
allocate ([allocator:]list)

C/C++ if ([taskloop :] scalar-expression)
C/C++ default (shared | none)
C/C++ final (scalar-expr)
For if ([taskloop :] scalar-logical-expression)
For default (private | firstprivate | shared | none)
For final (scalar-logical-expr) Continued4

© 2018 OpenMP ARB OMP1118-02-OMP5

OpenMP API 5.0 Page 3

Directives and Constructs (continued)

taskloop simd [2.10.3] [2.9.3]
Specifies that a loop can be executed concurrently using
SIMD instructions, and that those iterations will also be
executed in parallel using OpenMP tasks.

C/
C+

+ #pragma omp taskloop simd [clause[[,]clause] ...]
for-loops

Fo
r !$omp taskloop simd [clause[[,]clause] ...]

do-loops
[!$omp end taskloop simd]

clause: Any accepted by the simd or taskloop directives
with identical meanings and restrictions.

taskyield [2.10.4] [2.11.2]
Specifies that the current task can be suspended in favor
of execution of a different task.

C/
C+

+

#pragma omp taskyield

Fo
r

!$omp taskyield

Memory management directive
Memory spaces [2.11.1]
Predefined memory spaces [Table 2.7, below] represent
storage resources for storage and retrieval of variables.
Memory space Storage selection intent
omp_default_mem_space System default storage.
omp_large_cap_mem_space Storage with large capacity.
omp_const_mem_space Storage optimized for variables with

constant values.
omp_high_bw_mem_space Storage with high bandwidth.
omp_low_lat_mem_space Storage with low latency.

allocate [2.11.3]
Specifies how a set of variables is allocated.

C/
C+

+

#pragma omp allocate (list) [clause]

Fo
r

!$omp allocate (list) [clause]

or

!$omp allocate [(list)] clause
[!$omp allocate (list) clause
[...]]

allocate statement
clause:

allocator (allocator)
 - where allocator is an expression of:
 C/C++ type omp_allocator_handle_t
 For kind omp_allocator_handle_kind

Device directives and construct
target data [2.12.2] [2.10.1]
Creates a device data environment for extent of the region.

C/
C+

+ #pragma omp target data clause[[[,]clause] ...]
structured-block

Fo
r !$omp target data clause[[[,]clause] ...]

structured-block
!$omp end target data

clause:
map ([[map-type-modifier[,] [map-type-modifier[,] ...]
 map-type:] locator-list)
use_device_ptr (list), use_device_addr (list)

C/C++ if ([target data :] scalar-expression)
C/C++ device (scalar-expression)
For if ([target data :] scalar-logical-expression)
For device (scalar-integer-expression)

target enter data [2.12.3] [2.10.2]
Maps variables to a device data environment.

C/
C+

+

#pragma omp target enter data [clause[[,]clause] ...]

Fo
r

!$omp target enter data [clause[[,]clause] ...]
clause:

map ([map-type-modifier[,] [map-type-modifier[,] ...]
 map-type: locator-list)

depend ([depend-modifier,] dependence-type : locator-list)
nowait

C/C++ if ([target enter data :] scalar-expression) C/C++
C/C++ device (integer-expression) C/C++
For if ([target enter data :] scalar-logical-expression)
For device (scalar-integer-expression)

target exit data [2.12.4] [2.10.3]
Unmaps variables from a device data environment.

C/
C+

+

#pragma omp target exit data [clause[[,]clause] ...]

Fo
r

!$omp target exit data [clause[[,]clause] ...]
clause:

map ([map-type-modifier[,] [map-type-modifier[,] ...]
 map-type: locator-list)
depend ([depend-modifier,] dependence-type :
 locator-list)nowait
if ([target exit data :] scalar-expression) C/C++
device (integer-expression) C/C++
if ([target exit data :] scalar-logical-expression) For
device (scalar-integer-expression) For

target [2.12.5] [2.10.4]
Map variables to a device data environment and execute
the construct on that device.

C/
C+

+ #pragma omp target [clause[[,]clause] ...]
structured-block

Fo
r !$omp target [clause[[,]clause] ...]

structured-block
!$omp end target

clause:
if ([target :] scalar-expression)
private (list), firstprivate (list)
in_reduction (reduction-identifier : list)
map ([[map-type-modifier[,] [map-type-modifier[,] ...]
 map-type:] locator-list)
is_device_ptr (list)
defaultmap (implicit-behavior[:variable-category])
nowait
depend([depend-modifier,] dependence-type : locator-list)
allocate ([allocator :] list)
uses_allocators (allocator[(allocator-traits-array)]
 [,allocator[(allocator-traits-array)] ...])

C/C++ if ([target :] scalar-expression)
C/C++ device([device-modifier:] integer-expression)
For if ([target :] scalar-logical-expression)
For device ([device-modifier:] scalar-integer-expression)
 device-modifier: ancestor, device_num
 allocator: C/C++

Identifier of type omp_allocator_handle_t
 allocator: For

Integer expression of kind omp_allocator_handle_kind
 allocator-traits-array: C/C++

Identifier of const omp_alloctrait_t * type.
 allocator-traits-array: For

Array of type(omp_alloctrait) type

target update [2.12.6] [2.10.5]
Makes the corresponding list items in the device data
environment consistent with their original list items,
according to the specified motion clauses.

C/
C+

+

#pragma omp target update clause[[[,]clause] ...]

Fo
r

!$omp target update clause[[[,]clause] ...]

clause: motion-clause or one of:
nowait
depend ([depend-modifier,] dependence-type : locator-list)

C/C++ if ([target update :] scalar-expression)
C/C++ device (integer-expression)
For if ([target update :] scalar-logical-expression)
For device (scalar-integer-expression)
motion-clause:

to ([mapper(mapper-identifier) :] locator-list)
from ([mapper(mapper-identifier) :] locator-list)

declare target [2.12.7] [2.10.6]
A declarative directive that specifies that variables,
functions, and subroutines are mapped to a device.

C/
C+

+

#pragma omp declare target
declarations-definition-seq

#pragma omp end declare target
- or -
#pragma omp declare target (extended-list)
- or -
#pragma omp declare target clause[[,]clause ...]

Fo
r

!$omp declare target (extended-list)
- or -

!$omp declare target [clause[[,]clause] ...]
clause:

to (extended-list), link (list)
device_type (host | nohost | any)

extended-list: A comma-separated list of named variables,
procedure names, and named common blocks.

Combined constructs
Parallel Worksharing Loop [2.13.1] [2.11.1]
Specifies a parallel construct containing one worksharing-
loop construct with one or more associated loops.

C/
C+

+ #pragma omp parallel for [clause[[,]clause] ...]
for-loop

Fo
r !$omp parallel do [clause[[,]clause] ...]

do-loops
[!$omp end parallel do]

clause: Any accepted by the parallel or for directives,
except the nowait clause, with identical
meanings and restrictions.

parallel loop [2.13.2]
Shortcut for specifying a parallel construct containing
loop construct with one or more associated loops and no
other statements.

C/
C+

+ #pragma omp parallel loop [clause[[,]clause] ...]
for-loops

Fo
r !$omp parallel loop [clause[[,]clause] ...]

do-loops
[!$omp end parallel loop]

clause: Any accepted by the parallel or loop directives,
with identical meanings and restrictions.

parallel sections [2.13.3] [2.11.2]
Shortcut for specifying a parallel construct containing one
sections construct and no other statements.

C/
C+

+

#pragma omp parallel sections [clause[[,]clause] ...]
{
[#pragma omp section]
 structured-block
[#pragma omp section
 structured-block]
...
}

Fo
r

!$omp parallel sections [clause[[,]clause] ...]
[!$omp section]
 structured-block
[!$omp section
 structured-block]
...

!$omp end parallel sections
clause: Any clauses accepted by the parallel or sections

directives, with identical meanings and restrictions.

parallel workshare [2.13.4] [2.11.3]
Shortcut for specifying a parallel construct containing one
workshare construct and no other statements.

Fo
r !$omp parallel workshare [clause[[,]clause] ...]

structured-block
!$omp end parallel workshare

clause: Any of the clauses accepted by the parallel
directive, with identical meanings and restrictions.

Continued4Continued4

Page 4 OpenMP API 5.0

© 2018 OpenMP ARB OMP1118-02-OMP5

Directives and Constructs (continued)

Parallel Worksharing-Loop SIMD [2.13.5] [2.11.4]
Shortcut for specifying a parallel construct containing one
do simd construct and no other statements.

C/
C+

+ #pragma omp parallel for simd [clause[[,]clause] ...]
for-loops

Fo
r !$omp parallel do simd [clause[[,]clause] ...]

do-loops
[!$omp end parallel do simd]

clause: Any accepted by the parallel or for/do simd
directives with identical meanings and restrictions.

parallel master [2.13.6]
Shortcut for specifying a parallel construct containing one
master construct and no other statements.

C/
C+

+ #pragma omp parallel master [clause[[,]clause] ...]
 structured-block

Fo
r !$omp parallel master [clause[[,]clause] ...]

 structured-block
$omp end parallel master

clause: Any clause used for parallel or master directives
with identical meanings and restrictions.

master taskloop [2.13.7]
Shortcut for specifying a master construct containing a
taskloop construct and no other statements.

C/
C+

+ #pragma omp master taskloop [clause[[,]clause] ...]
for-loops

Fo
r !$omp master taskloop [clause[[,]clause] ...]

do-loops
[$omp end master taskloop]

clause: Any clause used for master or taskloop directives
with identical meanings and restrictions.

master taskloop simd [2.13.8]
Shortcut for specifying a master construct containing a
taskloop simd construct and no other statements.

C/
C+

+ #pragma omp master taskloop simd \
 [clause[[,]clause] ...]
 for-loops

Fo
r !$omp master taskloop simd [clause[[,]clause] ...]

 do-loops
[$omp end master taskloop simd]

clause: Any clause used for master or taskloop simd
directives with identical meanings and restrictions.

parallel master taskloop [2.13.9]
Shortcut for specifying a parallel construct containing one
master taskloop construct and no other statements.

C/
C+

+ #pragma omp parallel master taskloop \
 [clause[[,]clause] ...]
 for-loops

Fo
r !$omp parallel master taskloop [clause[[,]clause] ...]

 do-loops
[$omp end parallel master taskloop]

clause: Any clause used for parallel or master taskloop
directives, except the in_reduction clause, with
identical meanings and restrictions.

parallel master taskloop simd [2.13.10]
Shortcut for specifying a parallel construct containing a
master taskloop simd construct and no other statements.

C/
C+

+ #pragma omp parallel master taskloop simd \
 [clause[[,]clause] ...]
 for-loops

Fo
r !$omp parallel master taskloop simd [clause[[,]clause] ...]

 do-loops
[$omp end parallel master taskloop simd]

clause: Any clause used for parallel or master taskloop
simd directives, except the in_reduction clause, with
identical meanings and restrictions.

teams distribute [2.13.11] [2.11.10]
Shortcut for specifying a teams construct containing a
distribute construct and no other statements. .

C/
C+

+ #pragma omp teams distribute [clause[[,]clause] ...]
for-loops

Fo
r !$omp teams distribute [clause[[,]clause] ...]

do-loops
[!$omp end teams distribute]

clause: Any accepted by the teams or distribute directives
with identical meanings and restrictions.

teams distribute simd [2.13.12] [2.11.11]
Shortcuts for specifying teams constructs containing a
distribute simd construct and no other statements.

C/
C+

+ #pragma omp teams distribute simd [clause[[,]
 clause] ...]
for-loops

Fo
r !$omp teams distribute simd [clause[[,]clause] ...]

do-loops
[!$omp end teams distribute simd]

clause: Any accepted by the teams or distribute simd
directives with identical meanings and restrictions.

Teams Distribute Parallel Worksharing-
Loop [2.13.13] [2.11.14]
Shortcut for specifying a teams construct containing a
distribute parallel worksharing-loop construct and no
other statements.

C/
C+

+ #pragma omp teams distribute parallel for \
 [clause[[,]clause] ...]
for-loops

Fo
r !$omp teams distribute parallel do [clause[[, clause] ...]

do-loops
[!$omp end teams distribute parallel do]

clause: Any clause used for teams or distribute parallel
do/for with identical meanings and restrictions.

Teams Distribute Parallel Worksharing-Loop
SIMD [2.13.14] [2.11.7]
Shortcut for specifying a teams construct containing a
target construct containing a distribute parallel work-
sharing-loop SIMD construct and no other statements.

C/
C+

+ #pragma omp teams distribute parallel for simd \
 [clause[[,]clause] ...]
for-loops

Fo
r

!$omp teams distribute parallel do simd
 [clause[[,]clause] ...]
do-loops

[!$omp end teams distribute parallel do simd]
clause: Any accepted by teams or distribute parallel for/

do simd, with identical meanings and restrictions.

teams loop [2.13.15]
Shortcut for specifying a teams construct containing a
loop construct and no other statements.

C/
C+

+ #pragma omp teams loop [clause[[,]clause] ...]
for -loops

Fo
r !$omp teams loop [clause[[,]clause] ...]

do-loops
[!$omp end teams loop]

clause: Any accepted by the teams or loop directives with
identical meanings and restrictions.

target parallel [2.13.16] [2.11.5]
Shortcut for specifying a target construct containing a
parallel construct and no other statements.

C/
C+

+ #pragma omp target parallel [clause[[,]clause] ...]
structured-block

Fo
r !$omp target parallel [clause[[,]clause] ...]

structured-block
[!$omp end target parallel]

clause: Any accepted by the target or parallel directives,
except for copyin, with identical meanings and
restrictions.

Target Parallel Worksharing-Loop [2.13.17] [2.11.8]
Shortcut for specifying a target construct with a parallel
worksharing-loop construct and no other statements.

C/
C+

+ #pragma omp target parallel for [clause[[,]clause] ...]
for -loops

Fo
r !$omp target parallel do [clause[[,]clause] ...]

do-loops
[!$omp end target parallel do]

clause: Any accepted by the target or parallel for/do
directives, except for copyin, with identical meanings
and restrictions.

Target Parallel Worksharing-Loop SIMD
[2.13.18] [2.11.9]
Shortcut for specifying a target construct with a parallel
worksharing-loop SIMD construct and no other
statements.

C/
C+

+ #pragma omp target parallel for simd \
 [clause[[,]clause] ...]
for-loops

Fo
r !$omp target parallel for simd [clause[[,]clause] ...]

do-loops
!$omp end target parallel for simd

clause: Any accepted by the target or parallel for/do simd
directives with identical meanings and restrictions.

target parallel loop [2.13.19] [2.11.10]
Shortcuts for specifying target constructs containing a
parallel loop construct and no other statements.

C/
C+

+ #pragma omp target parallel loop [clause[[,]clause] ...]
for-loops

Fo
r !$omp target parallel loop [clause[[,]clause] ...]

do-loops
[!$omp end target parallel loop]

clause: Any accepted by the teams or parallel loop
directives with identical meanings and restrictions.

target simd [2.13.20] [2.11.8]
Shortcuts for specifying target constructs containing a
simd construct and no other statements.

C/
C+

+ #pragma omp target simd [clause[[,]clause] ...]
for-loops

Fo
r !$omp target simd [clause[[,]clause] ...]

do-loops
[!$omp end target simd]

clause: Any accepted by the target or simd directives with
identical meanings and restrictions.

target teams [2.13.21] [2.11.9]
Shortcuts for specifying target constructs containing a
teams construct and no other statements.

C/
C+

+ #pragma omp target teams [clause[[,]clause] ...]
structured-block

Fo
r !$omp target teams [clause[[,]clause] ...]

structured-block
[!$omp end target teams]

clause: Any accepted by the target or teams directives
with identical meanings and restrictions.

target teams distribute [2.13.22] [2.11.12]
Shortcuts for specifying a target construct containing a
teams distribute construct and no other statements.

C/
C+

+ #pragma omp target teams distribute [clause[[,]
clause] ...]
for-loops

Fo
r !$omp target teams distribute [clause[[,]clause] ...]

do-loops
[!$omp end target teams distribute]

clause: Any accepted by the target or teams distribute
directives with identical meanings and restrictions.

Continued4

© 2018 OpenMP ARB OMP1118-02-OMP5

OpenMP API 5.0 Page 5

Directives and Constructs (continued)

target teams distribute simd [2.13.23] [2.11.13]
Shortcuts for specifying a target construct containing a
teams distribute simd construct and no other statements.

C/
C+

+ #pragma omp target teams distribute simd \
 [clause[[,]clause] ...]
for-loops

Fo
r !$omp target teams distribute simd [clause[[,]clause] ...]

do-loops
[!$omp end target teams distribute simd]

clause: Any accepted by the target or teams distribute
simd directives with identical meanings and
restrictions.

Target Teams Loop [2.13.24]
Shortcut for specifying a target construct containing a
teams loop construct and no other statements.

C/
C+

+ #pragma omp target teams loop [clause[[,]clause] ...]
for-loops

Fo
r !$omp target teams loop [clause[[,]clause] ...]

do-loops
[!$omp end target teams loop]

clause: Any clause used for target or teams loop
directives with identical meanings and restrictions.

Target Teams Distribute Parallel
Worksharing-Loop [2.13.25] [2.11.15]
Shortcut for specifying a target construct containing a
teams distribute parallel worksharing-loop construct and
no other statements.

C/
C+

+ #pragma omp target teams distribute parallel for \
[clause[[,]clause] ...]
for-loops

Fo
r

!$omp target teams distribute parallel do &
 [clause[[,]clause] ...]
 do-loops

[$omp end target teams distribute parallel do]
clause:

Any clause used for teams distribute parallel do or
teams distribute parallel for or target directives with
identical meanings and restrictions.

Target Teams Distribute Parallel
Worksharing-Loop SIMD [2.13.26] [2.11.17]
Shortcut for specifying a target construct containing
a teams distribute parallel worksharing-loop SIMD
construct and no other statements.

C/
C+

+ #pragma omp target teams distribute parallel for simd \
[clause[[,]clause] ...]
for-loops

Fo
r

!$omp target teams distribute parallel do simd &
[clause[[,]clause] ...]
 do-loops

[!$omp end target teams distribute parallel do simd]
clause: Any clause used for teams distribute parallel do

simd, teams distribute parallel for simd, or target
directives with identical meanings and restrictions.

master construct
master [2.16] [2.13.1]
Specifies a structured block that is executed by the
master thread of the team.

C/
C+

+ #pragma omp master
structured-block

Fo
r !$omp master

structured-block
!$omp end master

Synchronization constructs
critical [2.17.1] [2.13.2]
Restricts execution of the associated structured block to a
single thread at a time.

C/
C+

+ #pragma omp critical [(name) [[,] hint (hint-expression)]]
structured-block

Fo
r !$omp critical [(name) [[,] hint (hint-expression)]]

structured-block
!$omp end critical [(name)]

hint-expression: C/C++
An integer constant expression that evaluates to a
valid synchronization hint

hint-expression: For
A constant expression that evaluates to a scalar value
with kind omp_sync_hint_kind and a value that is a
valid synchronization hint

barrier [2.17.2] [2.13.3]
Placed only at a point where a base language statement
is allowed, this directive specifies an explicit barrier at the
point at which the construct appears.

C/
C+

+

#pragma omp barrier

Fo
r

!$omp barrier

taskwait [2.17.5] [2.13.4]
Specifies a wait on the completion of child tasks of the
current task.

C/
C+

+

#pragma omp taskwait [clause[[,] clause] ...]

Fo
r

!$omp taskwait [clause[[,] clause] ...]

clause:
depend ([depend-modifier,] dependence-type :
 locator-list)

taskgroup [2.17.6] [2.13.5]
Specifies a wait on the completion of child tasks of the
current task, and waits for descendant tasks.

C/
C+

+ #pragma omp taskgroup [clause[[,]clause] ...]
structured-block

Fo
r !$omp taskgroup [clause[[,]clause] ...]

structured-block
!$omp end taskgroup

clause:
task_reduction (reduction-identifier : list)
allocate ([allocator:]list)

atomic [2.17.7] [2.13.6]
Ensures a specific storage location is accessed atomically.
May take one of the following seven forms:

C/
C+

+

#pragma omp atomic [clause[[[,] clause] ...] [,]]
 atomic-clause
[[,] clause [[[,] clause] ...]]
expression-stmt

#pragma omp atomic [clause[[,] clause] ...]
expression-stmt

#pragma omp atomic [clause[[[,] clause] ...] [,] capture
[[,] clause [[[,] clause] ...]]
structured-block

Fo
r

!$omp atomic [clause[[[,] clause] ...] [,]] read &
[[,] clause [[[,] clause] ...]]
capture-statement

[!$omp end atomic]

!$omp atomic [clause[[[,] clause] ...] [,]] write &
[[,] clause [[[,] clause] ...]]
write-statement

[!$omp end atomic]

!$omp atomic [clause[[[,] clause] ...] [,]] update &
[[,] clause [[[,] clause] ...]]
update-statement

[!$omp end atomic]

!$omp atomic [clause[[,] clause] ...]
update-statement

[!$omp end atomic] Continued in next column

Fo
r

!$omp atomic [clause[[[,] clause] ...] [,]] capture &
[[,] clause [[[,] clause] ...]]
update-statement
capture-statement

!$omp end atomic

!$omp atomic [clause[[[,] clause] ...] [,]] capture &
[[,] clause [[[,] clause] ...]]
capture-statement
update-statement

!$omp end atomic

!$omp atomic [clause[[[,] clause] ...] [,]] capture &
[[,] clause [[[,] clause] ...]]
capture-statement
write-statement

!$omp end atomic
atomic-clause: read, write, update, capture
memory-order-clause: seq_cst, acq_rel, release, acquire,

relaxed
clause: memory-order-clause or hint (hint-expression)
expression-stmt: C/C++

if atomic clause is... expression-stmt:

read v = x;

write x = expr;

update or
is not present

 x++; x--; ++x; --x;
x binop= expr; x = x binop expr;
x = expr binop x;

capture
 v=x++; v=x--; v=++x; v= --x;
v=x binop= expr; v=x = x binop expr;
v=x = expr binop x;

 structured-block may be one of the following forms: C/C++
 {v = x; x binop= expr;} {x binop= expr; v = x;}
 {v = x; x = x binop expr;} {v = x; x = expr binop x;}
 {x = x binop expr; v = x;} {x = expr binop x; v = x;}
 {v = x; x = expr;} {v = x; x++;} {v = x; ++x;}
 {++x; v = x;} {x++; v = x;} {v = x; x--;}
 {v = x; --x;} {--x; v = x;} {x--; v = x;}

 capture-, write-, or update-statement: For

capture-statement v = x

write-statement x = expr

update-statement x = x operator expr
x = expr operator x
x = intrinsic_procedure_name (x, expr_list)
x = intrinsic_procedure_name (expr_list, x)

intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, IEOR
operator is one of +, *, -, /, .AND., .OR., .EQV., .NEQV.

flush [2.17.8] [2.13.7]
Makes a thread’s temporary view of memory consistent
with memory, and enforces an order on the memory
operations of the variables.

C/
C+

+

#pragma omp flush [memory-order-clause] [(list)]

Fo
r

!$omp flush [memory-order-clause] [(list)]

memory-order-clause: acq_rel, release, or acquire

ordered [2.17.9] [2.13.8]
Specifies a structured block in a worksharing-loop, simd,
or worksharing-loop SIMD region, or it specifies cross-
iteration dependences in a doacross loop nest.

C/
C+

+

#pragma omp ordered [clause[[,] clause]]
structured-block

- or -
#pragma omp ordered clause[[[,] clause]...]

Fo
r

!$omp ordered [clause[[,] clause]]
structured-block

!$omp end ordered
- or -
!$omp ordered clause[[[,]clause] ...]

clause (for the first form): threads or simd
clause (for the second form):

depend (source) or depend (sink : vec)

Continued4Continued4

Page 6 OpenMP API 5.0

© 2018 OpenMP ARB OMP1118-02-OMP5

Directives and Constructs (continued)

Runtime Library Routines

Execution environment routines
omp_set_num_threads [3.2.1] [3.2.1]
Affects the number of threads used for subsequent parallel
regions not specifying a num_threads clause, by setting
the value of the first element of the nthreads-var ICV of the
current task to num_threads.

C/
C+

+

void omp_set_num_threads (int num_threads);

Fo
r subroutine omp_set_num_threads (num_threads)

integer num_threads

omp_get_num_threads [3.2.2] [3.2.2]
Returns the number of threads in the current team. The
binding region for an omp_get_num_threads region is
the innermost enclosing parallel region. If called from the
sequential part of a program, this routine returns 1.

C/
C+

+

int omp_get_num_threads (void);

Fo
r

integer function omp_get_num_threads ()

omp_get_max_threads [3.2.3] [3.2.3]
Returns an upper bound on the number of threads that
could be used to form a new team if a parallel construct
without a num_threads clause were encountered after
execution returns from this routine.

C/
C+

+

int omp_get_max_threads (void);

Fo
r

integer function omp_get_max_threads ()

omp_get_thread_num [3.2.4] [3.2.4]
Returns the thread number of the calling thread, within the
current team.

C/
C+

+

int omp_get_thread_num (void);

Fo
r

integer function omp_get_thread_num ()

omp_get_num_procs [3.2.5] [3.2.5]
Returns the number of processors that are available to the
device at the time the routine is called.

C/
C+

+

int omp_get_num_procs (void);

Fo
r

integer function omp_get_num_procs ()

omp_in_parallel [3.2.6] [3.2.6]
Returns true if the active-levels-var ICV is greater than zero;
otherwise it returns false.

C/
C+

+

int omp_in_parallel (void);

Fo
r

logical function omp_in_parallel ()

omp_set_dynamic [3.2.7] [3.2.7]
Enables or disables dynamic adjustment of the number of
threads available for the execution of subsequent parallel
regions by setting the value of the dyn-var ICV.

C/
C+

+

void omp_set_dynamic (int dynamic_threads);

Fo
r subroutine omp_set_dynamic (dynamic_threads)

logical dynamic_threads

omp_get_dynamic [3.2.8] [3.2.8]
This routine returns the value of the dyn-var ICV, which
is true if dynamic adjustment of the number of threads is
enabled for the current task.

C/
C+

+

int omp_get_dynamic (void);

Fo
r

logical function omp_get_dynamic ()

omp_get_cancellation [3.2.9] [3.2.9]
Returns the value of the cancel-var ICV, which is true if
cancellation is activated; otherwise it returns false.

C/
C+

+

int omp_get_cancellation (void);

Fo
r

logical function omp_get_cancellation ()

•omp_set_nested [3.2.10] [3.2.10]
Enables or disables nested parallelism, by setting the
max-active-levels-var ICV.

C/
C+

+

void omp_set_nested (int nested);

Fo
r subroutine omp_set_nested (nested)

logical nested

• omp_get_nested [3.2.11] [3.2.11]
Returns whether nested parallelism is enabled or disabled,
according to the value of the max-active-levels-var ICV.

C/
C+

+

int omp_get_nested (void);

Fo
r

logical function omp_get_nested ()

omp_set_schedule [3.2.12] [3.2.12]
Affects the schedule that is applied when runtime is used
as schedule kind, by setting the value of the run-sched-var
ICV.

C/
C+

+ void omp_set_schedule(omp_sched_t kind,
int chunk_size);

Fo
r subroutine omp_set_schedule (kind, chunk_size)

integer (kind=omp_sched_kind) kind
integer chunk_size

See omp_get_schedule for kind.

depobj [2.17.10.1]
Stand-alone directive that initalizes, updates, or destroys
an OpenMP depend object.

C/
C+

+

#pragma omp depobj (depobj) clause

Fo
r

!$omp depobj (depobj) clause

clause:
depend (dependence-type : locator)
destroy
update (dependence-type)

Cancellation constructs
cancel [2.18.1] [2.14.1]
Requests cancellation of the innermost enclosing region
of the type specified.

C/
C+

+

#pragma omp cancel construct-type-clause[[,] if-clause]

Fo
r

!$omp cancel construct-type-clause[[,]if-clause]

construct-type-clause:
parallel, sections, taskgroup

C/C++ for
For do
if-clause:
C/C++ if ([cancel :] scalar-expression)
For if ([cancel :] scalar-logical-expression)

cancellation point [2.18.2] [2.14.2]
Introduces a user-defined cancellation point at which
tasks check if cancellation of the innermost enclosing
region of the type specified has been activated.

C/
C+

+

#pragma omp cancellation point construct-type-clause

Fo
r

!$omp cancellation point construct-type-clause

construct-type-clause:
parallel, sections, taskgroup

C/C++ for
For do

Data environment directive
threadprivate [2.19.2] [2.15.2]
Specifies that variables are replicated, with each thread
having its own copy. Each copy of a threadprivate variable
is initialized once prior to the first reference to that copy.

C/
C+

+

#pragma omp threadprivate (list)

Fo
r

!$omp threadprivate (list)

list: C/C++
A comma-separated list of file-scope, namespace-
scope, or static block-scope variables that do not
have incomplete types

list: For
A comma-separated list of named variables and
named common blocks. Common block names must
appear between slashes.

declare reduction [2.19.5.7] [2.16]
Declares a reduction-identifier that can be used in a
reduction clause.

C/
C+

+ #pragma omp declare reduction (reduction-identifier :
typename-list : combiner) [initializer-clause]

Fo
r !$omp declare reduction &

(reduction-identifier : type-list : combiner)
[initializer-clause]

type-list or typename-list: A list of type specifiers
initializer-clause: initializer (initializer-expr)

where initializer-expr is omp_priv = initializer or
function-name (argument-list)

reduction-identifier: C/C++
A base language identifier (for C), or an id-expression
(for C++), or one of the following operators: +, -, *,
&, |, ^, &&, ||

combiner: C/C++ An expression
reduction-identifier: For

A base language identifier, user defined operator, or
one of the following operators:
+, -, *, .and., .or., .eqv., .negv., or one of the following
intrinsic procedure names: max, min, iand, ior, ieor.

combiner: For
An assignment statement or a subroutine name
followed by an argument list.

declare mapper [2.19.7.3]
Declares a user-defined mapper for a given type, and
may define a mapper-identifier for use in a map clause.

C/
C+

+ #pragma omp declare mapper ([mapper-identifier :]
type var) [clause[[,] clause] ...]

Fo
r !$omp declare mapper ([mapper-identifier:]type :: var)&

 [clause[[,] clause] ...]
mapper-identifier: A base-language identifier or default
type: A valid type in scope
var: A valid base-language identifier
clause: map ([[map-type-modifier[,] [map-type-

modifier[,] ...]] map-type:] list)
map-type:

alloc, to, from, tofrom
map-type-modifier:

always, close

Continued4

© 2018 OpenMP ARB OMP1118-02-OMP5

OpenMP API 5.0 Page 7

Runtime Library Routines (continued)

omp_get_schedule [3.2.13] [3.2.13]
Returns the value of run-sched-var ICV, which is the
schedule applied when runtime schedule is used.

C/
C+

+ void omp_get_schedule (
omp_sched_t *kind, int *chunk_size);

Fo
r subroutine omp_get_schedule (kind, chunk_size)

integer (kind=omp_sched_kind) kind
integer chunk_size

kind for omp_set_schedule and omp_get_schedule is an
implementation-defined schedule or:

omp_sched_static
omp_sched_dynamic
omp_sched_guided
omp_sched_auto

Use + or | operators (C/C++) or the + operator (For)
to combine the kinds with the modifier
omp_sched_monotonic.

omp_get_thread_limit [3.2.14] [3.2.14]
Returns the value of the thread-limit-var ICV, which is the
maximum number of OpenMP threads available.

C/
C+

+

int omp_get_thread_limit (void);

Fo
r

integer function omp_get_thread_limit ()

omp_get_supported_active_levels [3.2.15]
Returns the number of active levels of parallelism supported.

C/
C+

+

void omp_get_supported_active_levels(void);

Fo
r

integer function omp_get_supported_active_levels ()

omp_set_max_active_levels [3.2.16] [3.2.15]
Limits the number of nested active parallel regions, by
setting max-active-levels-var ICV.

C/
C+

+

void omp_set_max_active_levels (int max_levels);

Fo
r subroutine omp_set_max_active_levels (max_levels)

integer max_levels

omp_get_max_active_levels [3.2.17] [3.2.16]
Returns the value of max-active-levels-var ICV, which
determines the maximum number of nested active parallel
regions.

C/
C+

+

int omp_get_max_active_levels (void);

Fo
r

integer function omp_get_max_active_levels ()

omp_get_level [3.2.18] [3.2.17]
For the enclosing device region, returns the levels-vars ICV,
which is the number of nested parallel regions that enclose
the task containing the call.

C/
C+

+

int omp_get_level (void);

Fo
r

integer function omp_get_level ()

omp_get_ancestor_thread_num [3.2.19] [3.2.18]
Returns, for a given nested level of the current thread, the
thread number of the ancestor of the current thread.

C/
C+

+

int omp_get_ancestor_thread_num (int level);

Fo
r integer function omp_get_ancestor_thread_num (

level)
integer level

omp_get_team_size [3.2.20] [3.2.19]
Returns, for a given nested level of the current thread,
the size of the thread team to which the ancestor or the
current thread belongs.

C/
C+

+

int omp_get_team_size (int level);

Fo
r integer function omp_get_team_size (level)

integer level

omp_get_active_level [3.2.21] [3.2.20]
Returns the value of the active-level-vars ICV, which
determines the number of active, nested parallel regions
enclosing the task that contains the call.

C/
C+

+

int omp_get_active_level (void);

Fo
r

integer function omp_get_active_level ()

omp_in_final [3.2.22] [3.2.21]
Returns true if the routine is executed in a final task region;
otherwise, it returns false.

C/
C+

+

int omp_in_final (void);

Fo
r

logical function omp_in_final ()

omp_get_proc_bind [3.2.23] [3.2.22]
Returns the thread affinity policy to be used for the
subsequent nested parallel regions that do not specify a
proc_bind clause.

C/
C+

+

omp_proc_bind_t omp_get_proc_bind (void);

Fo
r integer (kind=omp_proc_bind_kind)

function omp_get_proc_bind ()

Returns one of:
 omp_proc_bind_false
 omp_proc_bind_true
 omp_proc_bind_master
 omp_proc_bind_close
 omp_proc_bind_spread

omp_get_num_places [3.2.24] [3.2.23]
Returns the number of places available to the execution
environment in the place list.

C/
C+

+

int omp_get_num_places (void);

Fo
r

integer function omp_get_num_places ()

omp_get_place_num_procs [3.2.25] [3.2.24]
Returns the number of processors available to the
execution environment in the specified place.

C/
C+

+

int omp_get_place_num_procs (int place_num);

Fo
r integer function omp_get_place_num_procs (

place_num)
integer place_num

omp_get_place_proc_ids [3.2.26] [3.2.25]
Returns numerical identifiers of the processors available to
the execution environment in the specified place.

C/
C+

+ void omp_get_place_proc_ids (
int place_num, int *ids);

Fo
r subroutine omp_get_place_proc_ids(place_num, ids)

integer place_num
integer ids (*)

omp_get_place_num [3.2.27] [3.2.26]
Returns the place number of the place to which the
encountering thread is bound.

C/
C+

+

int omp_get_place_num (void);

Fo
r

integer function omp_get_place_num ()

omp_get_partition_num_places [3.2.28] [3.2.27]
Returns the number of places in the place partition of the
innermost implicit task.

C/
C+

+

int omp_get_partition_num_places (void);

Fo
r

integer function omp_get_partition_num_places ()

omp_get_partition_place_nums [3.2.29] [3.2.28]
Returns the list of place numbers corresponding to the
places in the place-partition-var ICV of the innermost
implicit task.

C/
C+

+ void omp_get_partition_place_nums (
int *place_nums);

Fo
r subroutine omp_get_partition_place_nums(

place_nums)
integer place_nums (*)

omp_set_affinity_format [3.2.30]
Sets the affinity format to be used on the device by setting
the value of the affinity-format-var ICV.

C/
C+

+

void omp_set_affinity_format (const char *format);

Fo
r subroutine omp_set_affinity_format (format)

character(len=*), intent(in) :: format

omp_get_affinity_format [3.2.31]
Returns the value of the affinity-format-var ICV on the
device.

C/
C+

+ size_t omp_get_affinity_format (char *buffer,
size_t size);

Fo
r integer function omp_get_affinity_format (buffer)

character(len=*), intent(out) :: buffer

omp_display_affinity [3.2.32]
Prints the OpenMP thread affinity information using the
format specification provided.

C/
C+

+

void omp_display_affinity (const char *format);

Fo
r subroutine omp_display_affinity (format)

character(len=*), intent(in) :: format

omp_capture_affinity [3.2.33]
Prints the OpenMP thread affinity information into a buffer
using the format specification provided.

C/
C+

+ size_t omp_capture_affinity (char *buffer, size_t size,
const char *format)

Fo
r integer function omp_capture_affinity (buffer, format)

character(len=*), intent(out) :: buffer
character(len=*), intent(in) :: format

omp_set_default_device [3.2.34] [3.2.29]
Assigns the value of the default-device-var ICV, which
determines default target device.

C/
C+

+

void omp_set_default_device (int device_num);

Fo
r subroutine omp_set_default_device (device_num)

integer device_num

omp_get_default_device [3.2.35] [3.2.30]
Returns the value of the default-device-var ICV, which
determines default target device.

C/
C+

+

int omp_get_default_device (void);

Fo
r

integer function omp_get_default_device ()

omp_get_num_devices [3.2.36] [3.2.31]
Returns the number of target devices.

C/
C+

+

int omp_get_num_devices (void);

Fo
r

integer function omp_get_num_devices ()

omp_get_device_num [3.2.37]
Returns the device number of the device on which the
calling thread is executing.

C/
C+

+

int omp_get_device_num (void);

Fo
r

integer function omp_get_device_num ()
Continued4Continued4

Page 8 OpenMP API 5.0

© 2018 OpenMP ARB OMP1118-02-OMP5

Runtime Library Routines (continued)

omp_get_num_teams [3.2.38] [3.2.32]
Returns the number of teams in the current teams region,
or 1 if called from outside of a teams region.

C/
C+

+

int omp_get_num_teams (void);

Fo
r

integer function omp_get_num_teams ()

omp_get_team_num [3.2.39] [3.2.33]
Returns the team number of the calling thread. The team
number is an integer between 0 and one less than the value
returned by omp_get_num_teams, inclusive.

C/
C+

+

int omp_get_team_num (void);

Fo
r

integer function omp_get_team_num ()

omp_is_initial_device [3.2.40] [3.2.34]
Returns true if the current task is executing on the host
device; otherwise, it returns false.

C/
C+

+

int omp_is_initial_device (void);

Fo
r

integer function omp_is_initial_device ()

omp_get_initial_device [3.2.41] [3.2.35]
Returns a device number representing the host device.

C/
C+

+

int omp_get_initial_device (void);

Fo
r

integer function omp_get_initial_device()

omp_get_max_task_priority [3.2.42] [3.2.36]
Returns the maximum value that can be specified in the
priority clause.

C/
C+

+

int omp_get_max_task_priority (void);

Fo
r

integer function omp_get_max_task_priority ()

omp_pause_resource [3.2.43]
Allows the runtime to relinquish resources used by
OpenMP on the specified device.

C/
C+

+ int omp_pause_resource (
omp_pause_resource_t kind, int device_num);

Fo
r

integer function omp_pause_resource (
kind, device_num)

integer (kind=omp_pause_resource_kind) kind
integer device_num

omp_pause_resource_all [3.2.44]
Allows the runtime to relinquish resources used by
OpenMP on the specified device.

C/
C+

+ int omp_pause_resource_all (
omp_pause_resource_t kind);

Fo
r integer function omp_pause_resource_all (kind)

integer (kind=omp_pause_resource_kind) kind

Lock routines
General-purpose lock routines. Two types of locks are
supported: simple locks and nestable locks. A nestable
lock can be set multiple times by the same task before
being unset; a simple lock cannot be set if it is already
owned by the task trying to set it.

Initialize lock [3.3.1] [3.3.1]
Initialize an OpenMP lock.

C/
C+

+ void omp_init_lock (omp_lock_t *lock);

void omp_init_nest_lock (omp_nest_lock_t *lock);

Fo
r

subroutine omp_init_lock (svar)
integer (kind=omp_lock_kind) hint

subroutine omp_init_nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Initialize lock with hint [3.3.2] [3.3.2]
Initialize an OpenMP lock with a hint.

C/
C+

+

void omp_init_lock_with_hint (
omp_lock_t *lock,
omp_sync_hint_t hint);

void omp_init_nest_lock_with_hint (
omp_nest_lock_t *lock,
omp_sync_hint_t hint);

Fo
r

subroutine omp_init_lock_with_hint (svar, hint)
integer (kind=omp_lock_kind) svar
integer (kind=omp_sync_hint_kind) hint

subroutine omp_init_nest_lock_with_hint (nvar, hint)
integer (kind=omp_nest_lock_kind) nvar
integer (kind=omp_sync_hint_kind) hint

hint: see [2.17.12]

Destroy lock [3.3.3] [3.3.3]
Ensure that the OpenMP lock is uninitialized.

C/
C+

+ void omp_destroy_lock (omp_lock_t *lock);

void omp_destroy_nest_lock (omp_nest_lock_t *lock);

Fo
r

subroutine omp_destroy_lock (svar)
integer (kind=omp_lock_kind) svar

subroutine omp_destroy_nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Set lock [3.3.4] [3.3.4]
Sets an OpenMP lock. The calling task region is suspended
until the lock is set.

C/
C+

+ void omp_set_lock (omp_lock_t *lock);

void omp_set_nest_lock (omp_nest_lock_t *lock);

Fo
r

subroutine omp_set_lock (svar)
integer (kind=omp_lock_kind) svar

subroutine omp_set_nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Unset lock [3.3.5] [3.3.5]
Unsets an OpenMP lock.

C/
C+

+ void omp_unset_lock (omp_lock_t *lock);

void omp_unset_nest_lock (omp_nest_lock_t *lock);

Fo
r

subroutine omp_unset_lock (svar)
integer (kind=omp_lock_kind) svar

subroutine omp_unset_nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Test lock [3.3.6] [3.3.6]
Attempt to set an OpenMP lock but do not suspend
execution of the task executing the routine.

C/
C+

+ int omp_test_lock (omp_lock_t *lock);

int omp_test_nest_lock (omp_nest_lock_t *lock);

Fo
r

logical function omp_test_lock (svar)
integer (kind=omp_lock_kind) svar

integer function omp_test_nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Timing routines
Timing routines support a portable wall clock timer. These
record elapsed time per-thread and are not guaranteed to
be globally consistent across all the threads participating
in an application.

omp_get_wtime [3.4.1] [3.4.1]
Returns elapsed wall clock time in seconds.

C/
C+

+

double omp_get_wtime (void);

Fo
r

double precision function omp_get_wtime ()

omp_get_wtick [3.4.2] [3.4.2]
Returns the precision of the timer (seconds between ticks)
used by omp_get_wtime.

C/
C+

+

double omp_get_wtick (void);

Fo
r

double precision function omp_get_wtick ()

Event routine
Event routines support OpenMP event objects, which
must be accessed through routines described in this
section or through the detach clause of the task
construct.

omp_fulfill_event [3.5.1]
Fulfills and destroys an OpenMP event.

C/
C+

+

void omp_fulfill_event (omp_event_handle_t event);

Fo
r subroutine omp_fulfill_event (event)

integer (kind=omp_event_handle_kind) event

Device memory routines
These routines support allocation and management of
pointers in the data environments of target devices.

omp_target_alloc [3.6.1] [3.5.1]
Allocates memory in a device data environment.

C/
C+

+

void *omp_target_alloc (size_t size, int device_num);

omp_target_free [3.6.2] [3.5.2]
Frees the device memory allocated by the
omp_target_alloc routine.

C/
C+

+ void omp_target_free (void *device_ptr,
int device_num);

omp_target_is_present [3.6.3] [3.5.3]
Validates whether a host pointer has an associated device
buffer on a given device.

C/
C+

+ int omp_target_is_present (const void *ptr,
int device_num);

omp_target_memcpy [3.6.4] [3.5.4]
Copies memory between any combination of host and
device pointers.

C/
C+

+ int omp_target_memcpy (void *dst, const void *src,
size_t length, size_t dst_offset, size_t src_offset,
int dst_device_num, int src_device_num);

omp_target_memcpy_rect [3.6.5] [3.5.5]
Copies a rectangular subvolume from a multi-dimensional
array to another multi-dimensional array.

C/
C+

+

int omp_target_memcpy_rect (void * dst, const void * src,
size_t element_size, int num_dims,
const size_t* volume, const size_t* dst_offsets,
const size_t* src_offsets,
const size_t* dst_dimensions,
const size_t* src_dimensions, int dst_device_num,
int src_device_num);

omp_target_associate_ptr [3.6.6] [3.5.6]
Maps a device pointer, which may be returned from
omp_target_alloc or implementation-defined runtime
routines, to a host pointer.

C/
C+

+ int omp_target_associate_ptr (const void * host_ptr,
const void * device_ptr, size_t size,
size_t device_offset, int device_num);

omp_target_disassociate_ptr [3.6.7] [3.5.7]
Removes the associated pointer for a given device from a
host pointer.

C/
C+

+ int omp_target_disassociate_ptr (const void * ptr,
int device_num);

Continued4

© 2018 OpenMP ARB OMP1118-02-OMP5

OpenMP API 5.0 Page 9

Runtime Library Routines (continued)

Memory management routines
Memory Management Types [3.7.2]
The omp_alloctrait_t struct in C/C++ and omp_alloctrait
type in Fortran define members named key and value,
with these types and values:

enum omp_alloctrait_key_t (C/C++)
integer omp_alloctrait_key_kind (For)
omp_atk_X where X may be one of sync_hint, alignment,

access, pool_size, fallback, fb_data, pinned, partition

enum omp_alloctrait_value_t (C/C++)
integer omp_alloctrait_val_kind (For)
omp_atv_X where X may be one of false, true, default,

contended, uncontended, sequential, private, all,
thread, pteam, cgroup, default_mem_fb, null_fb,
abort_fb, allocator_fb, environment, nearest,
blocked, interleaved

omp_init_allocator [3.7.2]
Initializes allocator and associates it with a memory space.

C/
C+

+ omp_allocator_handle_t omp_init_allocator (
omp_memspace_handle_t memspace,
int ntraits, const omp_alloctrait_t traits[]);

Fo
r

integer (kind=omp_allocator_handle_kind) &
function omp_init_allocator (&
memspace, ntraits, traits)
integer (kind=omp_memspace_handle_kind), &
intent (in) :: memspace
integer, intent (in) :: ntraits &
type (omp_alloctrait), intent (in) :: traits (*)

omp_destroy_allocator [3.7.3]
Releases all resources used by the allocator handle.

C/
C+

+ void omp_destroy_allocator (
omp_allocator_handle_t allocator);

Fo
r subroutine omp_destroy_allocator (allocator)

integer (kind=omp_allocator_handle_kind), &
intent (in) :: allocator

omp_set_default_allocator [3.7.4]
Sets the default memory allocator to be used by allocation
calls, allocate directives, and allocate clauses that do not
specify an allocator.

C/
C+

+ void omp_set_default_allocator (
omp_allocator_handle_t allocator);

Fo
r subroutine omp_set_default_allocator (allocator)

integer (kind=omp_allocator_handle_kind), &
intent (in) :: allocator

omp_get_default_allocator [3.7.5]
Returns the memory allocator to be used by allocation calls,
allocate directives, and allocate clauses that do not specify
an allocator.

C/
C+

+ omp_allocator_handle_t
omp_get_default_allocator (void);

Fo
r integer (kind=omp_allocator_handle_kind)

function omp_get_default_allocator ()

omp_alloc [3.7.6]
Requests a memory allocation from a memory allocator.

C void *omp_alloc (size_t size,
omp_allocator_handle_t allocator);

C+
+ void *omp_alloc (size_t size,

const omp_allocator_t
allocator=omp_null_allocator);

omp_free [3.7.7]
Deallocates previously allocated memory.

C void omp_free (void *ptr,
omp_allocator_handle_t allocator);

C+
+ void omp_free (void *ptr, omp_allocator_handle_t

allocator=omp_null_allocator);

Tool control routine
omp_control_tool [3.8]
Enables a program to pass commands to an active tool.

C/
C+

+ int omp_control_tool (int command, int modifier,
void *arg);

Fo
r

integer function omp_control_tool (&
command, modifier)

integer (kind=omp_control_tool_kind) command
integer modifier

command:
 omp_control_tool_start

Start or restart monitoring if it is off. If monitoring
is already on, this command is idempotent. If
monitoring has already been turned off permanently,
this command will have no effect.

 omp_control_tool_pause
Temporarily turn monitoring off. If monitoring is
already off, it is idempotent.

 omp_control_tool_flush
Flush any data buffered by a tool. This command may
be applied whether monitoring is on or off.

 omp_control_tool_end
Turn monitoring off permanently; the tool finalizes
itself and flushes all output.

Clauses
All list items appearing in a clause must be visible according to the scoping rules of the base language. Not all of the clauses listed in this section are valid on all directives.

Allocate Clause [2.11.4]

allocate ([allocator:] list)
Specifies the memory allocator to be used to obtain
storage for private variables of a directive.
 allocator:

C/C++ Expression of type omp_allocator_handle_t
For Integer expression of kind omp_allocator_handle_kind

Data Copying Clauses [2.19.6] [2.15.4]

copyin (list)
Copies the value of the master thread’s threadprivate
variable to the threadprivate variable of each other
member of the team executing the parallel region.

copyprivate (list)
Broadcasts a value from the data environment of one
implicit task to the data environments of the other
implicit tasks belonging to the parallel region.

Data Sharing Attribute Clauses [2.19.4] [2.15.3]
Applies only to variables whose names are visible in the
construct on which the clause appears.

default (shared | none) C/C++

default (private | firstprivate | shared | none) For
Explicitly determines default data-sharing attributes
of variables referenced in a parallel, teams, or task
generating construct, causing all variables referenced in
the construct that have implicitly determined data-
sharing attributes to be as specified.

shared (list)
Declares list items to be shared by tasks generated by
parallel, teams, or task-generating construct. Storage
shared by explicit task region must not reach the end
of its lifetime before the explicit task region completes
execution.

private (list)
Declares list items to be private to a task or a SIMD
lane. Each task or SIMD lane that references a list item
in the construct receives only one new list item, unless
the construct has one or more associated loops and the
order(concurrent) clause is also present.

firstprivate (list)
Declares list items to be private to a task, and initializes
each of them with the value that the corresponding
original item has when the construct is encountered.

lastprivate ([lastprivate-modifier:] list)
Declares one or more list items to be private to an implicit
task or SIMD lane, and causes the corresponding original
list item to be updated after the end of the region.
 lastprivate-modifier: conditional

linear (linear-list[: linear-step])
Declares one or more list items to be private and to have
a linear relationship with respect to the iteration space of
a loop associated with the construct on which the clause
appears.
 linear-list: list or modifier(list)
 modifier: ref, val, or uval (C: modifier may only be val)

Defaultmap Clause [2.19.7.2] [2.15.5.2]

defaultmap (implicit-behavior[: variable-category])
Explicitly determines the data-mapping attributes
referenced in a target construct and would otherwise be
implicitly determined.
map-type: alloc, to, from, tofrom, firstprivate, none, default
variable-category: C/C++

scalar, aggregate, pointer
variable-category:

scalar, aggregate, pointer, allocatable For

Depend Clause [2.17.11] [2.13.9]
Enforces additional constraints on the scheduling of
tasks or loop iterations, establishing dependences only
between sibling tasks or between loop iterations.

depend (dependence-type)
 dependence-type may be source.

depend (dependence-type : vec)
 dependence-type: sink and is the iteration vector with

the form: x1 [± d1], x2 [± d2], . . . , xn [± dn]

depend ([depend-modifier,]dependence-type : locator-list)
 dependence-modifier: iterator (iterators-definition)
 dependence-type: in, out, inout, mutexinoutset, depobj

• in: The generated task will be dependent of all
previously generated sibling tasks that reference
at least one of the list items in an out or inout
dependence-type list.

Continued4

Page 10 OpenMP API 5.0

© 2018 OpenMP ARB OMP1118-02-OMP5

Clauses (continued)

• out and inout: The generated task will be dependent
of all previously generated sibling tasks that
reference at least one of the list items in an in, out,
mutexinoutset, or inout dependence-type list.

• mutexinoutset: If the storage location of at least
one of the list items is the same as that of a list item
appearing in a depend clause with an in, out, or
inout dependence-type on a construct from which
a sibling task was previously generated, then the
generated task will be a dependent task of that
sibling task. If the storage location of at least one
of the list items is the same as that of a list item
appearing in a depend clause with a mutexinoutset
dependence-type on a construct from which a sibling
task was previously generated, then the sibling tasks
will be mutually exclusive tasks.

Depend (continued)
• depobj: The task dependences are derived from the

depend clause specified in the depobj constructs
that initialized dependences represented by the
depend objects specified on in the depend clause as
if the depend clauses of the depobj constructs were
specified in the current construct.

If Clause [2.15] [2.12]
The effect of the if clause depends on the construct
to which it is applied. For combined or composite
constructs, it only applies to the semantics of the
construct named in the directive-name-modifier if one is
specified. If none is specified for a combined or composite
construct then the if clause applies to all constructs to
which an if clause can apply.

if ([directive-name-modifier :] scalar-expression) C/C++

if ([directive-name-modifier :] scalar-logical-expression) For

Map Clause [2.19.7.1] [2.15.5.1]

map ([[map-type-modifier[,] [map-type-modifier[,] ...]
 map-type :] locator-list)

Map an original list item from the current task’s data
environment to a corresponding list item in the device
data environment of the device identified by the
construct.
 map-type: alloc, to, from, tofrom, release, delete
 map-type-modifier: always, close,

mapper (mapper-identifier)

Reduction Clauses [2.19.5]

reduction ([reduction-modifier ,] reduction-identifier : list)
Specifies a reduction-identifier and one or more list items.
 reduction-modifier: inscan, task, default
 reduction-identifier: C++ Either an id-expression or one

of the following operators: +, -, *, &, |, ^, &&, ||
 reduction-identifier: C Either an identifier or one of the

following operators: +, -, *, &, |, ^, &&, ||
 reduction-identifier: For Either a base language

identifier, or a user-defined operator, or one of the
following operators: +, -, *, .and., .or., .eqv., .neqv.,
or one of the following intrinsic procedure names:
max, min, iand, ior, ieor.

task_reduction (reduction-identifier: list)
Specifies a reduction among tasks.
 reduction-identifier: Same as for reduction

in_reduction (reduction-identifier: list)
Specifies that a task participates in a reduction.
 reduction-identifier: Same as for reduction

SIMD Clauses [2.9.3] [2.8]

safelen (length)
If used then no two iterations executed concurrently
with SIMD instructions can have a greater distance in the
logical iteration space than its value.

collapse (n)
A constant positive integer expression that specifies how
many loops are associated with the construct.

simdlen (length)
A constant positive integer expression that specifies the
number of concurrent arguments of the function.

aligned (argument-list[:alignment])
Declares one or more list items to be aligned to the
specified number of bytes. alignment, if present, must be
a constant positive integer expression.

uniform (argument-list)
Declares one or more arguments to have an invariant
value for all concurrent invocations of the function in the
execution of a single SIMD loop.

inbranch
Specifies that the function will always be called from
inside a conditional statement of a SIMD loop.

notinbranch
Specifies that the function will never be called from inside
a conditional statement of a SIMD loop.

Tasking Clauses [2.10] [2.9]

affinity ([aff-modifier:] locator-list)
A hint to execute closely to the location of the list items.
aff-modifier is iterator (iterators-definition).

allocate ([allocator:]list)
See Allocate Clause, page 9 of this guide.

collapse (n)
See SIMD Clauses on this page.

default (shared | none) C/C++
default (private | firstprivate | shared | none) For
See Data Sharing Attribute Clauses, page 9 of this guide.

depend ([depend-modifier,] dependence-type :
 locator-list)

See Depend Clause, page 9 of this guide.

final (scalar-expression) C/C++
final (scalar-logical-expression) For
The generated task will be a final task if the final
expression evaluates to true.

firstprivate (list)
See Data Sharing Attribute Clauses, page 9 of this guide.

grainsize (grain-size)
Causes the number of logical loop iterations assigned
to each created task to be greater than or equal to the
minimum of the value of the grain-size expression and
the number of logical loop iterations, but less than two
times the value of the grain-size expression.

if ([task :] scalar-expression) C/C++
if ([task :] scalar-logical-expression) For
Also see If Clause on this page.

in_reduction (reduction-identifier: list)
See Reduction Clause on this page.

lastprivate (list)
See Data Sharing Attribute Clauses, page 9 of this guide.

mergeable
Specifies that the generated task is a mergeable task.

nogroup
Prevents an implicit taskgroup region to be created.

num_tasks (num-tasks)
Create as many tasks as the minimum of the num-tasks
expression and the number of logical loop iterations.

priority (priority-value)
A non-negative numerical scalar expression that specifies
a hint for the priority of the generated task.

private (list)
See Data Sharing Attribute Clauses, page 9 of this guide.

reduction ([default ,] reduction-identifier: list)
See Reduction Clauses on this page.

shared (list)
See Data Sharing Attribute Clauses, page 9 of this guide.

untied
If present, any thread in the team can resume the task
region after a suspension.

Iterators

iterators [2.1.6]
Identifiers that expand to multiple values in the clause
on which they appear.

iterator (iterators-definition)
iterators-definition:

iterator-specifier [, iterators-definition]
iterators-specifier:

[iterator-type] identifier = range-specification
identifier: A base language identifier.
range-specification: begin : end[: step]

begin, end: Expressions for which their types
can be converted to iterator-type

step: An integral expression.
iterator-type: A type name. C/C++

iterator-type: A type specifier. For

Notes

© 2018 OpenMP ARB OMP1118-02-OMP5

OpenMP API 5.0 Page 11

Environment Variables
Environment variable names are upper case, and the values assigned to them are case insensitive and may have leading and trailing white space.

OMP_ALLOCATOR arg [6.21]
Sets the def-allocator-var ICV that specifies the default
allocator for allocation calls, directives and clauses that
do not specify an allocator. The arg is a case-insensitive,
predefined allocator below (for details, see table 2.9):

omp_default_mem_alloc
omp_large_cap_mem_alloc
omp_const_mem_alloc
omp_high_bw_mem_alloc

omp_low_lat_mem_alloc
omp_cgroup_mem_alloc
omp_pteam_mem_alloc
omp_thread_mem_alloc

OpenMP memory allocators can be used to make
allocation requests. The behavior of the allocation
process can be affected by the allocator traits specified.
[Table 2.9] below shows allowed allocator traits and their
possible values, with the default value shown in blue.
Allocator trait Allowed values (default)
sync_hint contended, uncontended, serialized, private
alignment 1 byte; Positive integer value that is a power of 2
access all, cgroup, pteam, thread
pool_size Positive integer value

(default is implementation defined)
fallback default_mem_fb, null_fb, abort_fb, allocator_fb
fb_data An allocator handle (No default)
pinned true, false
partition environment, nearest, blocked, interleaved

OMP_AFFINITY_FORMAT format [6.14]
Sets the initial value of the affinity-format-var ICV defining
the format when displaying OpenMP thread affinity
information. The argument is a character string that
may contain as substrings one or more field specifiers,
in addition to other characters. The format of each field
specifier is: %[[[0].] size] type, where the field type may
be either the short or long names listed below [Table 5.2].

t team_num n thread_num
T num_teams N num_threads
L nesting_level a ancestor_tnum
P process_id A thread_affinity
H host i native_thread_id

OMP_CANCELLATION var [6.11] [4.11]
Sets the cancel-var ICV. var may be true or false. If true,
the effects of the cancel construct and of cancellation
points are enabled and cancellation is activated.

OMP_DEBUG var [6.20]
Sets the debug-var ICV. var may be enabled or disabled.
If enabled, the OpenMP implementation will collect
additional runtime information to be provided to a third-
party tool. If disabled, only reduced functionality might
be available in the debugger.

OMP_DEFAULT_DEVICE device [6.15] [4.13]
Sets the default-device-var ICV that controls the default
device number to use in device constructs.

OMP_DISPLAY_AFFINITY var [6.13]
Instructs the runtime to display formatted affinity
information for all OpenMP threads in the parallel
region. The information is displayed upon entering the
first parallel region and when there is any change in the
information accessible by the format specifiers listed
in the table for OMP_AFFINITY_FORMAT. If there is
a change of affinity of any thread in a parallel region,
thread affinity information for all threads in that region
will be displayed.

OMP_DISPLAY_ENV var [6.12] [4.12]
If var is TRUE, instructs the runtime to display the
OpenMP version number and the value of the ICVs
associated with the environment variables as name=value
pairs. If var is VERBOSE, the runtime may also display
vendor-specific variables. If var is FALSE, no information
is displayed.

OMP_DYNAMIC var [6.3] [4.3]
Sets the dyn-var ICV. If TRUE, the implementation may
dynamically adjust the number of threads to use
for executing parallel regions.

Internal Control Variables (ICV) Values
Host and target device ICVs are initialized before OpenMP API constructs or routines execute. After initial values are assigned, the values of environment variables set
by the user are read and the associated ICVs for the host device are modified accordingly. The method for initializing a target device’s ICVs is implementation defined.

Table of ICV Initial Values (Table 2.1) and Ways to Modify and to Retrieve ICV Values (Table 2.2) [2.5.2-3] [2.3.2-3]

ICV Environment variable Initial value Ways to modify value Ways to retrieve value Env. Var. Ref.

dyn-var OMP_DYNAMIC
Implementation-defined if the implementation
supports dynamic adjustment of the number of
threads; otherwise, the initial value is false.

omp_set_dynamic() omp_get_dynamic() [6.3] [4.3]

 nest-var OMP_NESTED Implementation defined. omp_set_nested() omp_get_nested() [6.9] [4.6]

nthreads-var OMP_NUM_THREADS Implementation defined list. omp_set_num_threads() omp_get_max_threads() [6.2] [4.2]

run-sched-var OMP_SCHEDULE Implementation defined. omp_set_schedule() omp_get_schedule() [6.1] [4.1]

def-sched-var (none) Implementation defined. (none) (none) ---

bind-var OMP_PROC_BIND Implementation defined list. (none) omp_get_proc_bind() [6.4] [4.4]

stacksize-var OMP_STACKSIZE Implementation defined. (none) (none) [6.6] [4.7]

wait-policy-var OMP_WAIT_POLICY Implementation defined. (none) (none) [6.7] [4.8]

thread-limit-var OMP_THREAD_LIMIT Implementation defined. thread_limit clause omp_get_thread_limit() [6.10] [4.10]

max-active-levels-var OMP_MAX_ACTIVE_LEVELS,
 OMP_NESTED

The number of levels of parallelism that the
implementation supports.

omp_set_max_active_levels(),
 omp_set_nested() omp_get_max_active_levels() [6.8] [4.9

active-levels-var (none) zero (none) omp_get_active_level() ---

levels-var (none) zero (none) omp_get_level() ---

place-partition-var OMP_PLACES Implementation defined. (none)

omp_get_partition_num_places()
omp_get_partition_place_nums()
omp_get_place_num_procs()
omp_get_place_proc_ids()

[6.5] [4.5]

cancel-var OMP_CANCELLATION false (none) omp_get_cancellation() [6.11] [4.11]

display-affinity-var OMP_DISPLAY_AFFINITY false (none) (none) [6.13]

affinity-format-var OMP_AFFINITY_FORMAT Implementation defined. omp_set_affinity_format() omp_get_affinity_format() [6.14]

default-device-var OMP_DEFAULT_DEVICE Implementation defined. omp_set_default_device() omp_get_default_device() [6.15] [4.13]

target-offload-var OMP_TARGET_OFFLOAD DEFAULT (none) (none) [6.17]

max-task-priority-var OMP_MAX_TASK_PRIORITY zero (none) omp_get_max_task_priority() [6.16] [4.14]

tool-var OMP_TOOL enabled (none) (none) [6.18]

tool-libraries-var OMP_TOOL_LIBRARIES empty string (none) (none) [6.19]

debug-var OMP_DEBUG disabled (none) (none) [6.20]

def-allocator-var OMP_ALLOCATOR Implementation defined. omp_set_default_allocator() omp_get_default_allocator() [6.21]

• •• •

• •

Continued4

Page 12 OpenMP API 5.0

© 2018 OpenMP ARB OMP1118-02-OMP5

Copyright © 2018 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is
granted, provided the OpenMP Architecture Review Board
copyright notice and the title of this document appear.
Notice is given that copying is by permission of the OpenMP
Architecture Review Board. Products or publications

based on one or more of the OpenMP specifications must
acknowledge the copyright by displaying the following
statement: “OpenMP is a trademark of the OpenMP
Architecture Review Board. Portions of this product/
publication may have been derived from the OpenMP
Language Application Program Interface Specification.”

®

Learn More About OpenMP

OpenMPCon
Developer’s Conference

Held back-to-back with IWOMP, the
annual OpenMPCon conference is
organized by and for the OpenMP
community to provide both novice and
experienced developers tutorials and new
insights into using OpenMP and other
directive-based APIs.

openmpcon.org

IWOMP International
OpenMP Workshop

The annual International Workshop
on OpenMP (IWOMP) is dedicated to
the promotion and advancement of all
aspects of parallel programming with
OpenMP, covering issues, trends, recent
research ideas, and results related to
parallel programming with OpenMP.

iwomp.org

ISC and Supercomputing
Conference Series

The annual ISC and SC conferences
provide the high-performance computing
community with technical programs that
makes them yearly must-attend forums.
OpenMP has a booth or holds sessions at
one or more of these events every year.

supercomputing.org
isc-hpc.com

UK OpenMP
Users Conference

The annual UK OpenMP Users Conference
provides two days of talks and workshops
aimed at furthering collaboration and
knowledge sharing among the UK
community of expert and novice high-
performance computing specialists using
the OpenMP API.

ukopenmpusers.co.uk

Learn More About OpenMP

Con
DE V E LO P E R S CONF E R ENCE INTERNATIONALWORKSHOP

Tool Activation

Activating an OMPT Tool [4.2]
There are three steps an OpenMP implementation takes
to activate a tool. This section explains how the tool and
an OpenMP implementation interact to accomplish these
tasks.

Step 1. Determine whether to initialize [4.2.2]
A tool indicates its interest in using the OMPT
interface by providing a non-NULL pointer to an
ompt_start_tool_result_t structure to an OpenMP
implementation as a return value from ompt_start_tool.

There are three ways that a tool can provide a definition
of ompt_start_tool to an OpenMP implementation:

• Statically linking the tool’s definition of
ompt_start_tool into an OpenMP application.

• Introducing a dynamically linked library that includes
the tool’s definition of ompt_start_tool into the
application’s address space.

• Providing the name of a dynamically linked
library appropriate for the architecture and
operating system used by the application in the
tool-libraries-var ICV.

Step 2. Initializing a first-party tool [4.2.3]
If a tool-provided implementation of
ompt_start_tool returns a non-NULL pointer to an
ompt_start_tool_result_t structure, the OpenMP
implementation will invoke the tool initializer specified
in this structure prior to the occurrence of any OpenMP
event.

Step 3. Monitoring activity on the host [4.2.4]
To monitor execution of an OpenMP program on
the host device, a tool’s initializer must register to
receive notification of events that occur as an OpenMP
program executes. A tool can register callbacks for
OpenMP events using the runtime entry point known
as ompt_set_callback, which has the following possible
return codes:

ompt_set_error
ompt_set_never
ompt_set_sometimes
ompt_set_sometimes_paired
ompt_set_always

If the ompt_set_callback runtime entry point is called
outside a tool’s initializer, registration of supported
callbacks may fail with a return code of ompt_set_error.

All callbacks registered with ompt_set_callback or
returned by ompt_get_callback use the dummy type
signature ompt_callback_t. While this is a compromise, it
is better than providing unique runtime entry points with
a precise type signatures to set and get the callback for
each unique runtime entry point type signature.

Users
DEVELOPER CONFERENCE & USER GROUP

Environment Variables (continued)

OMP_MAX_ACTIVE_LEVELS levels [6.8] [4.9]
Sets the max-active-levels-var ICV that controls the
maximum number of nested active parallel regions.

OMP_MAX_TASK_PRIORITY level [6.16] [4.14]
Sets the max-task-priority-var ICV that controls the use of
task priorities.

• OMP_NESTED nested [6.9] [4.6]
Controls nested parallelism with max-active-levels-var ICV.

OMP_NUM_THREADS list [6.2] [4.2]
Sets the nthreads-var ICV for the number of threads to
use for parallel regions.

OMP_PLACES places [6.5] [4.5]
Sets the place-partition-var ICV that defines the OpenMP
places available to the execution environment. places is
an abstract name (threads, cores, sockets, or imple-
mentation-defined) or a list of non-negative numbers.

OMP_PROC_BIND policy [6.4] [4.4]
Sets the value of the global bind-var ICV, setting the
thread affinity policy to use for parallel regions at the
corresponding nested level. policy can be the values true,
false, or a comma-separated list of master, close, or
spread in quotes.

OMP_SCHEDULE [modifier:]kind[, chunk] [6.1] [4.1]
Sets the run-sched-var ICV for the runtime schedule
kind and chunk size. modifier is one of monotonic or
nonmonotonic; kind is one of static, dynamic, guided,
or auto.

OMP_STACKSIZE size[B | K | M | G] [6.6] [4.7]
Sets the stacksize-var ICV that specifies the size
of the stack for threads created by the OpenMP
implementation. size is a positive integer that specifies
stack size. If unit is not specified, size is measured in
kilobytes (K).

OMP_TARGET_OFFLOAD arg [6.17]
Sets the initial value of the target-offload-var ICV. The
argument must be one of MANDATORY, DISABLED, or
DEFAULT.

OMP_THREAD_LIMIT limit [6.10] [4.10]
Sets the thread-limit-var ICV that controls the number of
threads participating in the OpenMP program.

OMP_TOOL (enabled|disabled) [6.18]
Sets the tool-var ICV. If disabled, no first-party tool
will be loaded nor initialized. If enabled the OpenMP
implementation will try to find and activate a first-party
tool.

OMP_TOOL_LIBRARIES library-list [6.19]
Sets the tool-libraries-var ICV to a list of tool libraries that
will be considered for use on a device where an OpenMP
implementation is being initialized. The library-list
argument is a colon-separated list of dynamically-linked
libraries, each specified by an absolute path.

OMP_WAIT_POLICY policy [6.7] [4.8]
Sets the wait-policy-var ICV that provides a hint to an
OpenMP implementation about the desired behavior
of waiting threads. Valid values for policy are ACTIVE
(waiting threads consume processor cycles while waiting)
and PASSIVE.

For information or to report errors in this reference guide contact us at info@openmp.org

