
ISBN 0-321-49362-1

Chapter 1

Preliminaries

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 1 Topics

• Reasons for Studying Concepts of
Programming Languages

• Programming Domains

• Language Evaluation Criteria

• Influences on Language Design

• Language Categories

• Language Design Trade-Offs

• Implementation Methods

• Programming Environments

Copyright © 2015 Pearson. All rights reserved. 1-3

Reasons for Studying Concepts of
Programming Languages

• Increased ability to express ideas

• Improved background for choosing
appropriate languages

• Increased ability to learn new languages

• Better understanding of significance of
implementation

• Better use of languages that are already
known

• Overall advancement of computing

Copyright © 2015 Pearson. All rights reserved. 1-4

Programming Domains

• Scientific applications
– Large numbers of floating point computations; use of arrays
– Fortran

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated; use of linked lists
– LISP

• Systems programming
– Need efficiency because of continuous use
– C

• Web Software
– Eclectic collection of languages: markup (e.g., HTML),

scripting (e.g., PHP), general-purpose (e.g., Java)

Copyright © 2015 Pearson. All rights reserved. 1-5

Language Evaluation Criteria

• Readability: the ease with which
programs can be read and understood

• Writability: the ease with which a
language can be used to create programs

• Reliability: conformance to specifications
(i.e., performs to its specifications)

• Cost: the ultimate total cost

Copyright © 2015 Pearson. All rights reserved. 1-6

Evaluation Criteria: Readability

• Overall simplicity
– A manageable set of features and constructs
– Minimal feature multiplicity

– Minimal operator overloading

• Orthogonality
– A relatively small set of primitive constructs can be combined in a

relatively small number of ways
– Every possible combination is legal

• Data types
– Adequate predefined data types

• Syntax considerations
– Identifier forms: flexible composition

– Special words and methods of forming compound statements
– Form and meaning: self-descriptive constructs, meaningful keywords

Copyright © 2015 Pearson. All rights reserved. 1-7

Evaluation Criteria: Writability

• Simplicity and orthogonality

– Few constructs, a small number of primitives, a small set of
rules for combining them

• Support for abstraction

– The ability to define and use complex structures or
operations in ways that allow details to be ignored

• Expressivity

– A set of relatively convenient ways of specifying operations

– Strength and number of operators and predefined functions

Copyright © 2015 Pearson. All rights reserved. 1-8

Evaluation Criteria: Reliability

• Type checking
– Testing for type errors

• Exception handling
– Intercept run-time errors and take corrective measures

• Aliasing
– Presence of two or more distinct referencing methods for the

same memory location

• Readability and writability
– A language that does not support “natural” ways of expressing

an algorithm will require the use of “unnatural” approaches, and
hence reduced reliability

Copyright © 2015 Pearson. All rights reserved. 1-9

Evaluation Criteria: Cost

• Training programmers to use the
language

• Writing programs (closeness to particular
applications)

• Compiling programs

• Executing programs

• Language implementation system:
availability of free compilers

• Reliability: poor reliability leads to high
costs

• Maintaining programs

Copyright © 2015 Pearson. All rights reserved. 1-10

Evaluation Criteria: Others

• Portability

– The ease with which programs can be moved
from one implementation to another

• Generality

– The applicability to a wide range of applications

• Well-definedness

– The completeness and precision of the
language’s official definition

Copyright © 2015 Pearson. All rights reserved. 1-11

Influences on Language Design

• Computer Architecture
– Languages are developed around the prevalent

computer architecture, known as the von
Neumann architecture

• Program Design Methodologies
– New software development methodologies (e.g.,

object-oriented software development) led to
new programming paradigms and by extension,
new programming languages

Copyright © 2015 Pearson. All rights reserved. 1-12

Computer Architecture Influence

• Well-known computer architecture: Von Neumann

• Imperative languages, most dominant, because of
von Neumann computers

– Data and programs stored in memory

– Memory is separate from CPU

– Instructions and data are piped from memory to CPU

– Basis for imperative languages

• Variables model memory cells

• Assignment statements model piping

• Iteration is efficient

Copyright © 2015 Pearson. All rights reserved. 1-13

The von Neumann Architecture

Copyright © 2015 Pearson. All rights reserved. 1-14

The von Neumann Architecture

• Fetch-execute-cycle (on a von Neumann
architecture computer)

initialize the program counter

repeat forever

 fetch the instruction pointed by the counter

 increment the counter

 decode the instruction

 execute the instruction

end repeat

Copyright © 2015 Pearson. All rights reserved. 1-15

Programming Methodologies Influences

• 1950s and early 1960s: Simple applications; worry
about machine efficiency

• Late 1960s: People efficiency became important;
readability, better control structures

– structured programming

– top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented

– data abstraction

• Middle 1980s: Object-oriented programming

– Data abstraction + inheritance + polymorphism

Copyright © 2015 Pearson. All rights reserved. 1-16

Language Categories

• Imperative
– Central features are variables, assignment statements, and

iteration
– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

• Functional
– Main means of making computations is by applying functions to

given parameters
– Examples: LISP, Scheme, ML, F#

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Markup/programming hybrid
– Markup languages extended to support some programming
– Examples: JSTL, XSLT

Copyright © 2015 Pearson. All rights reserved. 1-17

Language Design Trade-Offs

• Reliability vs. cost of execution
– Example: Java demands all references to array elements

be checked for proper indexing, which leads to increased
execution costs

• Readability vs. writability
Example: APL provides many powerful operators (and a large

number of new symbols), allowing complex computations
to be written in a compact program but at the cost of
poor readability

• Writability (flexibility) vs. reliability
– Example: C++ pointers are powerful and very flexible but

are unreliable

Copyright © 2015 Pearson. All rights reserved. 1-18

Implementation Methods

• Compilation

– Programs are translated into machine language; includes
JIT systems

– Use: Large commercial applications

• Pure Interpretation

– Programs are interpreted by another program known as
an interpreter

– Use: Small programs or when efficiency is not an issue

• Hybrid Implementation Systems

– A compromise between compilers and pure interpreters

– Use: Small and medium systems when efficiency is not the
first concern

Copyright © 2015 Pearson. All rights reserved. 1-19

Layered View of Computer

The operating system
and language
implementation are
layered over
machine interface of a
computer

Copyright © 2015 Pearson. All rights reserved. 1-20

Compilation

• Translate high-level program (source language)
into machine code (machine language)

• Slow translation, fast execution

• Compilation process has several phases:

– lexical analysis: converts characters in the source program
into lexical units

– syntax analysis: transforms lexical units into parse trees
which represent the syntactic structure of program

– Semantics analysis: generate intermediate code

– code generation: machine code is generated

Copyright © 2015 Pearson. All rights reserved. 1-21

The Compilation Process

Copyright © 2015 Pearson. All rights reserved. 1-22

Additional Compilation Terminologies

• Load module (executable image): the user
and system code together

• Linking and loading: the process of
collecting system program units and linking
them to a user program

Copyright © 2015 Pearson. All rights reserved. 1-23

Von Neumann Bottleneck

• Connection speed between a computer’s
memory and its processor determines the
speed of a computer

• Program instructions often can be executed
much faster than the speed of the
connection; the connection speed thus
results in a bottleneck

• Known as the von Neumann bottleneck; it is
the primary limiting factor in the speed of
computers

Copyright © 2015 Pearson. All rights reserved. 1-24

Pure Interpretation

• No translation

• Easier implementation of programs (run-time
errors can easily and immediately be displayed)

• Slower execution (10 to 100 times slower than
compiled programs)

• Often requires more space

• Now rare for traditional high-level languages

• Significant comeback with some Web scripting
languages (e.g., JavaScript, PHP)

Copyright © 2015 Pearson. All rights reserved. 1-25

Pure Interpretation Process

Copyright © 2015 Pearson. All rights reserved. 1-26

Hybrid Implementation Systems

• A compromise between compilers and pure
interpreters

• A high-level language program is
translated to an intermediate language that
allows easy interpretation

• Faster than pure interpretation

• Examples
– Perl programs are partially compiled to detect errors

before interpretation

– Initial implementations of Java were hybrid; the
intermediate form, byte code, provides portability to any
machine that has a byte code interpreter and a run-time
system (together, these are called Java Virtual Machine)

Copyright © 2015 Pearson. All rights reserved. 1-27

Hybrid Implementation Process

Copyright © 2015 Pearson. All rights reserved. 1-28

Just-in-Time Implementation Systems

• Initially translate programs to an intermediate
language

• Then compile the intermediate language of the
subprograms into machine code when they are
called

• Machine code version is kept for subsequent calls

• JIT systems are widely used for Java programs

• .NET languages are implemented with a JIT system

• In essence, JIT systems are delayed compilers

Copyright © 2015 Pearson. All rights reserved. 1-29

Preprocessors

• Preprocessor macros (instructions) are
commonly used to specify that code from
another file is to be included

• A preprocessor processes a program
immediately before the program is
compiled to expand embedded
preprocessor macros

• A well-known example: C preprocessor

– expands #include, #define, and similar
macros

Copyright © 2015 Pearson. All rights reserved. 1-30

Programming Environments

• A collection of tools used in software development

• UNIX

– An older operating system and tool collection

– Nowadays often used through a GUI (e.g., CDE, KDE, or
GNOME) that runs on top of UNIX

• Microsoft Visual Studio.NET

– A large, complex visual environment

• Used to build Web applications and non-Web applications in
any .NET language

• NetBeans

– Related to Visual Studio .NET, except for applications in
Java

Copyright © 2015 Pearson. All rights reserved. 1-31

Summary

• The study of programming languages is valuable for
a number of reasons:
– Increase our capacity to use different constructs
– Enable us to choose languages more intelligently
– Makes learning new languages easier

• Most important criteria for evaluating programming
languages include:
– Readability, writability, reliability, cost

• Major influences on language design have been
machine architecture and software development
methodologies

• The major methods of implementing programming
languages are: compilation, pure interpretation, and
hybrid implementation

	Slide 1: Chapter 1
	Slide 2: Chapter 1 Topics
	Slide 3: Reasons for Studying Concepts of Programming Languages
	Slide 4: Programming Domains
	Slide 5: Language Evaluation Criteria
	Slide 6: Evaluation Criteria: Readability
	Slide 7: Evaluation Criteria: Writability
	Slide 8: Evaluation Criteria: Reliability
	Slide 9: Evaluation Criteria: Cost
	Slide 10: Evaluation Criteria: Others
	Slide 11: Influences on Language Design
	Slide 12: Computer Architecture Influence
	Slide 13: The von Neumann Architecture
	Slide 14: The von Neumann Architecture
	Slide 15: Programming Methodologies Influences
	Slide 16: Language Categories
	Slide 17: Language Design Trade-Offs
	Slide 18: Implementation Methods
	Slide 19: Layered View of Computer
	Slide 20: Compilation
	Slide 21: The Compilation Process
	Slide 22: Additional Compilation Terminologies
	Slide 23: Von Neumann Bottleneck
	Slide 24: Pure Interpretation
	Slide 25: Pure Interpretation Process
	Slide 26: Hybrid Implementation Systems
	Slide 27: Hybrid Implementation Process
	Slide 28: Just-in-Time Implementation Systems
	Slide 29: Preprocessors
	Slide 30: Programming Environments
	Slide 31: Summary

