
ISBN 0-321-49362-1

Chapter 12

Support for

Object-Oriented
Programming

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 12 Topics

• Introduction

• Object-Oriented Programming

• Design Issues for Object-Oriented Languages

• Support for Object-Oriented Programming in Smalltalk

• Support for Object-Oriented Programming in C++

• Support for Object-Oriented Programming in Objective-C

• Support for Object-Oriented Programming in Java

• Support for Object-Oriented Programming in C#

• Support for Object-Oriented Programming in Ruby

• Implementation of Object-Oriented Constructs

• Reflection

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction

• Many object-oriented programming (OOP)
languages

– Some support procedural and data-oriented
programming (e.g., C++)

– Some support functional program (e.g., CLOS)

– Newer languages do not support other
paradigms but use their imperative structures
(e.g., Java and C#)

– Some are pure OOP language (e.g., Smalltalk &
Ruby)

– Some functional languages support OOP, but
they are not discussed in this chapter

Copyright © 2015 Pearson. All rights reserved. 1-4

Object-Oriented Programming

• Three major language features:

– Abstract data types (Chapter 11)

– Inheritance

• Inheritance is the central theme in OOP and
languages that support it

– Polymorphism

Copyright © 2015 Pearson. All rights reserved. 1-5

Inheritance

• Productivity increases can come from reuse

– ADTs are difficult to reuse—always need
changes

– All ADTs are independent and at the same level

• Inheritance allows new classes defined in
terms of existing ones, i.e., by allowing
them to inherit common parts

• Inheritance addresses both of the above
concerns--reuse ADTs after minor changes
and define classes in a hierarchy

Copyright © 2015 Pearson. All rights reserved. 1-6

Object-Oriented Concepts

• ADTs are usually called classes

• Class instances are called objects

• A class that inherits is a derived class or a
subclass

• The class from which another class inherits
is a parent class or superclass

• Subprograms that define operations on
objects are called methods

Copyright © 2015 Pearson. All rights reserved. 1-7

Object-Oriented Concepts (continued)

• Calls to methods are called messages

• The entire collection of methods of an
object is called its message protocol or
message interface

• Messages have two parts--a method name
and the destination object

• In the simplest case, a class inherits all of
the entities of its parent

Copyright © 2015 Pearson. All rights reserved. 1-8

Object-Oriented Concepts (continued)

• Inheritance can be complicated by access
controls to encapsulated entities

– A class can hide entities from its subclasses

– A class can hide entities from its clients

– A class can also hide entities for its clients while
allowing its subclasses to see them

• Besides inheriting methods as is, a class
can modify an inherited method

– The new one overrides the inherited one

– The method in the parent is overriden

Object-Oriented Concepts (continued)

• Three ways a class can differ from its
parent:

1. The subclass can add variables and/or methods
to those inherited from the parent

2. The subclass can modify the behavior of one or
more of its inherited methods.

3. The parent class can define some of its
variables or methods to have private access,
which means they will not be visible in the
subclass

Copyright © 2015 Pearson. All rights reserved. 1-9

Copyright © 2015 Pearson. All rights reserved. 1-10

Object-Oriented Concepts (continued)

• There are two kinds of variables in a class:
– Class variables - one/class

– Instance variables - one/object

• There are two kinds of methods in a class:
– Class methods – accept messages to the class

– Instance methods – accept messages to objects

• Single vs. Multiple Inheritance

• One disadvantage of inheritance for reuse:
– Creates interdependencies among classes that

complicate maintenance

Copyright © 2015 Pearson. All rights reserved. 1-11

Dynamic Binding

• A polymorphic variable can be defined in a
class that is able to reference (or point to)
objects of the class and objects of any of its
descendants

• When a class hierarchy includes classes that
override methods and such methods are
called through a polymorphic variable, the
binding to the correct method will be
dynamic

• Allows software systems to be more easily
extended during both development and
maintenance

Copyright © 2015 Pearson. All rights reserved. 1-12

Dynamic Binding Concepts

• An abstract method is one that does not
include a definition (it only defines a
protocol)

• An abstract class is one that includes at
least one virtual method

• An abstract class cannot be instantiated

Copyright © 2015 Pearson. All rights reserved. 1-13

Design Issues for OOP Languages

• The Exclusivity of Objects

• Are Subclasses Subtypes?

• Single and Multiple Inheritance

• Object Allocation and Deallocation

• Dynamic and Static Binding

• Nested Classes

• Initialization of Objects

Copyright © 2015 Pearson. All rights reserved. 1-14

The Exclusivity of Objects

• Everything is an object
– Advantage - elegance and purity

– Disadvantage - slow operations on simple objects

• Add objects to a complete typing system
– Advantage - fast operations on simple objects

– Disadvantage - results in a confusing type system (two
kinds of entities)

• Include an imperative-style typing system for
primitives but make everything else objects
– Advantage - fast operations on simple objects and a

relatively small typing system

– Disadvantage - still some confusion because of the two
type systems

Copyright © 2015 Pearson. All rights reserved. 1-15

Are Subclasses Subtypes?

• Does an “is-a” relationship hold between a
parent class object and an object of the
subclass?
– If a derived class is-a parent class, then objects

of the derived class must behave the same as
the parent class object

• A derived class is a subtype if it has an is-a
relationship with its parent class
– Subclass can only add variables and methods

and override inherited methods in “compatible”
ways

• Subclasses inherit implementation;
subtypes inherit interface and behavior

Copyright © 2015 Pearson. All rights reserved. 1-16

Single and Multiple Inheritance

• Multiple inheritance allows a new class to
inherit from two or more classes

• Disadvantages of multiple inheritance:

– Language and implementation complexity (in
part due to name collisions)

– Potential inefficiency - dynamic binding costs
more with multiple inheritance (but not much)

• Advantage:

– Sometimes it is quite convenient and valuable

Copyright © 2015 Pearson. All rights reserved. 1-17

Allocation and DeAllocation of Objects

• From where are objects allocated?
– If they behave line the ADTs, they can be

allocated from anywhere
• Allocated from the run-time stack

• Explicitly create on the heap (via new)

– If they are all heap-dynamic, references can be
uniform thru a pointer or reference variable

• Simplifies assignment - dereferencing can be
implicit

– If objects are stack dynamic, there is a problem
with regard to subtypes – object slicing

• Is deallocation explicit or implicit?

Copyright © 2015 Pearson. All rights reserved. 1-18

Dynamic and Static Binding

• Should all binding of messages to methods
be dynamic?

– If none are, you lose the advantages of dynamic
binding

– If all are, it is inefficient

• Maybe the design should allow the user to
specify

Copyright © 2015 Pearson. All rights reserved. 1-19

Nested Classes

• If a new class is needed by only one class,
there is no reason to define so it can be
seen by other classes

– Can the new class be nested inside the class
that uses it?

– In some cases, the new class is nested inside a
subprogram rather than directly in another class

• Other issues:

– Which facilities of the nesting class should be
visible to the nested class and vice versa

Initialization of Objects

• Are objects initialized to values when they
are created?

– Implicit or explicit initialization

• How are parent class members initialized
when a subclass object is created?

Copyright © 2015 Pearson. All rights reserved. 1-20

Copyright © 2015 Pearson. All rights reserved. 1-21

Support for OOP in Smalltalk

• Smalltalk is a pure OOP language

– Everything is an object

– All objects have local memory

– All computation is through objects sending
messages to objects

– None of the appearances of imperative
languages

– All objected are allocated from the heap

– All deallocation is implicit

- Smalltalk classes cannot be nested in other

 classes

Support for OOP in Smalltalk (continued)

• Inheritance

– A Smalltalk subclass inherits all of the instance
variables, instance methods, and class methods
of its superclass

– All subclasses are subtypes (nothing can be
hidden)

– All inheritance is implementation inheritance

– No multiple inheritance

Copyright © 2015 Pearson. All rights reserved. 1-22

Copyright © 2015 Pearson. All rights reserved. 1-23

Support for OOP in Smalltalk (continued)

• Dynamic Binding

– All binding of messages to methods is dynamic

• The process is to search the object to which the
message is sent for the method; if not found, search
the superclass, etc. up to the system class which
has no superclass

– The only type checking in Smalltalk is dynamic
and the only type error occurs when a message
is sent to an object that has no matching
method

Copyright © 2015 Pearson. All rights reserved. 1-24

Support for OOP in Smalltalk (continued)

• Evaluation of Smalltalk
– The syntax of the language is simple and

regular

– Good example of power provided by a small
language

– Slow compared with conventional compiled
imperative languages

– Dynamic binding allows type errors to go
undetected until run time

– Introduced the graphical user interface

– Greatest impact: advancement of OOP

Copyright © 2015 Pearson. All rights reserved. 1-25

Support for OOP in C++

• General Characteristics:

– Evolved from C and SIMULA 67

– Among the most widely used OOP languages

– Mixed typing system

– Constructors and destructors

– Elaborate access controls to class entities

Copyright © 2015 Pearson. All rights reserved. 1-26

Support for OOP in C++ (continued)

• Inheritance

– A class need not be the subclass of any class

– Access controls for members are

– Private (visible only in the class and friends)
(disallows subclasses from being subtypes)

– Public (visible in subclasses and clients)

– Protected (visible in the class and in subclasses,
but not clients)

Copyright © 2015 Pearson. All rights reserved. 1-27

Support for OOP in C++ (continued)

• In addition, the subclassing process can be
declared with access controls (private or
public), which define potential changes in
access by subclasses

– Private derivation - inherited public and
protected members are private in the subclasses

– Public derivation public and protected members
are also public and protected in subclasses

Copyright © 2015 Pearson. All rights reserved. 1-28

Inheritance Example in C++

class base_class {

 private:

 int a;

 float x;

 protected:

 int b;

 float y;

 public:

 int c;

 float z;

};

class subclass_1 : public base_class { … };

// In this one, b and y are protected and

// c and z are public

class subclass_2 : private base_class { … };

// In this one, b, y, c, and z are private,

// and no derived class has access to any

// member of base_class

Copyright © 2015 Pearson. All rights reserved. 1-29

Reexportation in C++

• A member that is not accessible in a
subclass (because of private derivation) can
be declared to be visible there using the
scope resolution operator (::), e.g.,

class subclass_3 : private base_class {

 base_class :: c;

 …
}

Copyright © 2015 Pearson. All rights reserved. 1-30

Reexportation (continued)

• One motivation for using private derivation

– A class provides members that must be visible,
so they are defined to be public members; a
derived class adds some new members, but
does not want its clients to see the members of
the parent class, even though they had to be
public in the parent class definition

Copyright © 2015 Pearson. All rights reserved. 1-31

Support for OOP in C++ (continued)

• Multiple inheritance is supported

– If there are two inherited members with the
same name, they can both be referenced using
the scope resolution operator (::)

class Thread { ... }

class Drawing { ... }

class DrawThread : public Thread, public Drawing

{ … }

Copyright © 2015 Pearson. All rights reserved. 1-32

Support for OOP in C++ (continued)

• Dynamic Binding

– A method can be defined to be virtual, which
means that they can be called through
polymorphic variables and dynamically bound to
messages

– A pure virtual function has no definition at all

– A class that has at least one pure virtual
function is an abstract class

Support for OOP in C++ (continued)

class Shape {

 public:

 virtual void draw() = 0;

 ...

 };

 class Circle : public Shape {

 public:

 void draw() { ... }

 ...

 };

 class Rectangle : public Shape {

 public:

 void draw() { ... }

 ...

 };

 class Square : public Rectangle {

 public:

 void draw() { ... }

 ...

 };

Copyright © 2015 Pearson. All rights reserved. 1-33

Square* sq = new Square;

Rectangle* rect = new Rectangle;

Shape* ptr_shape;

ptr_shape = sq; // points to a Square

ptr_shape ->draw(); // Dynamically

 // bound to draw in Square

rect->draw(); // Statically bound to

 // draw in Rectangle

Support for OOP in C++ (continued)

• If objects are allocated from the stack, it is
quite different

 Square sq; // Allocates a Square object from the stack

 Rectangle rect; // Allocates a Rectangle object from the stack

 rect = sq; // Copies the data member values from sq object

 rect.draw(); // Calls the draw from Rectangle

Copyright © 2015 Pearson. All rights reserved. 1-34

Copyright © 2015 Pearson. All rights reserved. 1-35

Support for OOP in C++ (continued)

• Evaluation
– C++ provides extensive access controls (unlike

Smalltalk)

– C++ provides multiple inheritance

– In C++, the programmer must decide at design
time which methods will be statically bound and
which must be dynamically bound

• Static binding is faster!

– Smalltalk type checking is dynamic (flexible, but
somewhat unsafe)

– Because of interpretation and dynamic binding,
Smalltalk is ~10 times slower than C++

Support for OOP in Objective-C

• Like C++, Objective-C adds support for
OOP to C

• Design was at about the same time as that
of C++

• Largest syntactic difference: method calls

• Interface section of a class declares the
instance variables and the methods

• Implementation section of a class defines
the methods

• Classes cannot be nested

Copyright © 2015 Pearson. All rights reserved. 1-36

Support for OOP in Objective-C
(continued)

• Inheritance
– Single inheritance only

– Every class must have a parent

– NSObject is the base class

 @interface myNewClass: NSObject { … }

 …

@end

– Because all public members of a base class are also public
in the derived class all subclasses are subtypes

– Any method that has the same name, same return type,
and same number and types of parameters as an inherited
method overrides the inherited method

– An overriden method can be called through super

– All inheritance is public (unlike C++)

Copyright © 2015 Pearson. All rights reserved. 1-37

Support for OOP in Objective-C
(continued)

• Inheritance (continued)

• Objective-C has two approaches besides
subclassing to extend a class

– A category is a secondary interface of a class that
contains declarations of methods (no instance variables

 #import ″Stack.h″

 @interface Stack (StackExtend)

 -(int) secondFromTop;

 -(void) full;

 @end

– A category is a mixin – its methods are added to the
parent class

– The implementation of a category is in a separate
implementation: @implementation Stack (StackExtend)

Copyright © 2015 Pearson. All rights reserved. 1-38

Support for OOP in Objective-C
(continued)

• Inheritance (continued)

– The other way to extend a class: protocols

– A protocol is a list of method declarations

 @protocol MatrixOps

 -(Matrix *) add: (Matrix *) mat;

 -(Matrix *) subtract: (Matrix *) mat;

 @optional

 -(Matrix *) multiply: (Matrix *) mat;

 @end

– MatrixOps is the name of the protocol

– The add and subtract methods must be implemented by
class that uses the protocol

– A class that adopts a protocol must specify it

 @interface MyClass: NSObject <YourProtocol>

Copyright © 2015 Pearson. All rights reserved. 1-39

Support for OOP in Objective-C
(continued)

• Dynamic Binding

– Different from other OOP languages – a
polymorphic variable is of type id

– An id type variable can reference any object

– The run-time system keeps track of the type of
the object that an id type variable references

– If a call to a method is made through an id type
variable, the binding to the method is dynamic

Copyright © 2015 Pearson. All rights reserved. 1-40

Support for OOP in Objective-C
(continued)

• Evaluation

– Support is adequate, with the following
deficiencies:

– There is no way to prevent overriding an
inherited method

– The use of id type variables for dynamic binding
is overkill – these variables could be misused

– Categories and protocols are useful additions

Copyright © 2015 Pearson. All rights reserved. 1-41

Copyright © 2015 Pearson. All rights reserved. 1-42

Support for OOP in Java

• Because of its close relationship to C++, focus is
on the differences from that language

• General Characteristics

– All data are objects except the primitive types

– All primitive types have wrapper classes that store one
data value

– All objects are heap-dynamic, are referenced through
reference variables, and most are allocated with new

– A finalize method is implicitly called when the garbage
collector is about to reclaim the storage occupied by the
object

Copyright © 2015 Pearson. All rights reserved. 1-43

Support for OOP in Java (continued)

• Inheritance

– Single inheritance supported only, but there is
an abstract class category that provides some of
the benefits of multiple inheritance (interface)

– An interface can include only method
declarations and named constants, e.g.,

 public interface Comparable <T> {

 public int comparedTo (T b);

 }

– Methods can be final (cannot be overriden)

- All subclasses are subtypes

Copyright © 2015 Pearson. All rights reserved. 1-44

Support for OOP in Java (continued)

• Dynamic Binding

– In Java, all messages are dynamically bound to
methods, unless the method is final (i.e., it
cannot be overriden, therefore dynamic binding
serves no purpose)

– Static binding is also used if the methods is
static or private both of which disallow
overriding

Copyright © 2015 Pearson. All rights reserved. 1-45

Support for OOP in Java (continued)

• Nested Classes

– All are hidden from all classes in their package, except for
the nesting class

– Nonstatic classes nested directly are called innerclasses
• An innerclass can access members of its nesting class

• A static nested class cannot access members of its nesting class

– Nested classes can be anonymous

– A local nested class is defined in a method of its nesting
class

• No access specifier is used

Copyright © 2015 Pearson. All rights reserved. 1-46

Support for OOP in Java (continued)

• Evaluation

– Design decisions to support OOP are similar to
C++

– No support for procedural programming

– No parentless classes

– Dynamic binding is used as “normal” way to
bind method calls to method definitions

– Uses interfaces to provide a simple form of
support for multiple inheritance

Copyright © 2015 Pearson. All rights reserved. 1-47

Support for OOP in C#

• General characteristics

– Support for OOP similar to Java

– Includes both classes and structs

– Classes are similar to Java’s classes

– structs are less powerful stack-dynamic
constructs (e.g., no inheritance)

Copyright © 2015 Pearson. All rights reserved. 1-48

Support for OOP in C# (continued)

• Inheritance

– Uses the syntax of C++ for defining classes

– A method inherited from parent class can be
replaced in the derived class by marking its
definition with new

– The parent class version can still be called
explicitly with the prefix base:

base.Draw()

- Subclasses are subtypes if no members of the

 parent class is private

- Single inheritance only

Copyright © 2015 Pearson. All rights reserved. 1-49

Support for OOP in C#

• Dynamic binding

– To allow dynamic binding of method calls to
methods:

• The base class method is marked virtual

• The corresponding methods in derived classes are
marked override

– Abstract methods are marked abstract and must
be implemented in all subclasses

– All C# classes are ultimately derived from a
single root class, Object

Copyright © 2015 Pearson. All rights reserved. 1-50

Support for OOP in C# (continued)

• Nested Classes

– A C# class that is directly nested in a nesting
class behaves like a Java static nested class

– C# does not support nested classes that behave
like the non-static classes of Java

Copyright © 2015 Pearson. All rights reserved. 1-51

Support for OOP in C#

• Evaluation

– C# is a relatively recently designed C-based OO
language

– The differences between C#’s and Java’s support
for OOP are relatively minor

Copyright © 2015 Pearson. All rights reserved. 1-52

Support for OOP in Ruby

• General Characteristics
– Everything is an object
– All computation is through message passing
– Class definitions are executable, allowing secondary

definitions to add members to existing definitions
– Method definitions are also executable
– All variables are type-less references to objects
– Access control is different for data and methods

• It is private for all data and cannot be changed
• Methods can be either public, private, or

 protected
• Method access is checked at runtime

– Getters and setters can be defined by shortcuts

Copyright © 2015 Pearson. All rights reserved. 1-53

Support for OOP in Ruby (continued)

• Inheritance
– Access control to inherited methods can be

different than in the parent class
– Subclasses are not necessarily subtypes

• Dynamic Binding
– All variables are typeless and polymorphic

• Evaluation
– Does not support abstract classes
– Does not fully support multiple inheritance
– Access controls are weaker than those of other

languages that support OOP

Implementing OO Constructs

• Two interesting and challenging parts

– Storage structures for instance variables

– Dynamic binding of messages to methods

Copyright © 2015 Pearson. All rights reserved. 1-54

Instance Data Storage

• Class instance records (CIRs) store the state
of an object

– Static (built at compile time)

• If a class has a parent, the subclass
instance variables are added to the parent
CIR

• Because CIR is static, access to all instance
variables is done as it is in records

– Efficient

Copyright © 2015 Pearson. All rights reserved. 1-55

Dynamic Binding of Methods Calls

• Methods in a class that are statically bound
need not be involved in the CIR; methods
that will be dynamically bound must have
entries in the CIR
– Calls to dynamically bound methods can be

connected to the corresponding code thru a
pointer in the CIR

– The storage structure is sometimes called
virtual method tables (vtable)

– Method calls can be represented as offsets from
the beginning of the vtable

Copyright © 2015 Pearson. All rights reserved. 1-56

Reflection

• A programming language that supports reflection
allows its programs to have runtime access to their
types and structure and to be able to dynamically
modify their behavior

• The types and structure of a program are called
metadata

• The process of a program examining its metadata
is called introspection

• Interceding in the execution of a program is called
intercession

Copyright © 2015 Pearson. All rights reserved. 1-57

Reflection (continued)

• Uses of reflection for software tools:
 - Class browsers need to enumerate the
 classes of a program
 - Visual IDEs use type information to assist
 the developer in building type correct
 code
 - Debuggers need to examine private fields
 and methods of classes
 - Test systems need to know all of the
 methods of a class

Copyright © 2015 Pearson. All rights reserved. 1-58

Reflection in Java

• Limited support from java.lang.Class

• Java runtime instantiates an instance of
Class for each object in the program

• The getClass method of Class returns the
Class object of an object

 float[] totals = new float[100];
 Class fltlist = totals.getClass();

 Class stg = ″hello″.getClass();

• If there is no object, use class field

 Class stg = String.class;

Copyright © 2015 Pearson. All rights reserved. 1-59

Reflection in Java (continued)

• Class has four useful methods:

• getMethod searches for a specific public
method of a class

• getMethods returns an array of all public
methods of a class

• getDeclaredMethod searches for a specific

 method of a class

• getDeclaredMethods returns an array of all

 methods of a class

Copyright © 2015 Pearson. All rights reserved. 1-60

Reflection in Java (continued)

• The Method class defines the invoke method,
which is used to execute the method found
by getMethod

Copyright © 2015 Pearson. All rights reserved. 1-61

Reflection in C#

• In the .NET languages the compiler places
the intermediate code in an assembly,
along with metadata about the program

• System.Type is the namespace for reflection

• getType is used instead of getClass

• typeof operator is used instead of .class field

• System.Reflection.Emit namespace provides
the ability to create intermediate code and
put it in an assembly (Java does not provide
this capability)

Copyright © 2015 Pearson. All rights reserved. 1-62

Downsides of Reflection

• Performance costs

• Exposes private fields and methods

• Voids the advantages of early type checking

• Some reflection code may not run under a
security manager, making code
nonportable

Copyright © 2015 Pearson. All rights reserved. 1-63

Copyright © 2015 Pearson. All rights reserved. 1-64

Summary

• OO programming involves three fundamental concepts:
ADTs, inheritance, dynamic binding

• Major design issues: exclusivity of objects, subclasses and
subtypes, type checking and polymorphism, single and
multiple inheritance, dynamic binding, explicit and implicit
de-allocation of objects, and nested classes

• Smalltalk is a pure OOL
• C++ has two distinct type systems (hybrid)
• Java is not a hybrid language like C++; it supports only OOP
• C# is based on C++ and Java
• Ruby is a relatively recent pure OOP language; provides some

new ideas in support for OOP
• Implementing OOP involves some new data structures
• Reflection is part of Java and C#, as well as most dynamically

types languages

	Slide 1: Chapter 12
	Slide 2: Chapter 12 Topics
	Slide 3: Introduction
	Slide 4: Object-Oriented Programming
	Slide 5: Inheritance
	Slide 6: Object-Oriented Concepts
	Slide 7: Object-Oriented Concepts (continued)
	Slide 8: Object-Oriented Concepts (continued)
	Slide 9: Object-Oriented Concepts (continued)
	Slide 10: Object-Oriented Concepts (continued)
	Slide 11: Dynamic Binding
	Slide 12: Dynamic Binding Concepts
	Slide 13: Design Issues for OOP Languages
	Slide 14: The Exclusivity of Objects
	Slide 15: Are Subclasses Subtypes?
	Slide 16: Single and Multiple Inheritance
	Slide 17: Allocation and DeAllocation of Objects
	Slide 18: Dynamic and Static Binding
	Slide 19: Nested Classes
	Slide 20: Initialization of Objects
	Slide 21: Support for OOP in Smalltalk
	Slide 22: Support for OOP in Smalltalk (continued)
	Slide 23: Support for OOP in Smalltalk (continued)
	Slide 24: Support for OOP in Smalltalk (continued)
	Slide 25: Support for OOP in C++
	Slide 26: Support for OOP in C++ (continued)
	Slide 27: Support for OOP in C++ (continued)
	Slide 28: Inheritance Example in C++
	Slide 29: Reexportation in C++
	Slide 30: Reexportation (continued)
	Slide 31: Support for OOP in C++ (continued)
	Slide 32: Support for OOP in C++ (continued)
	Slide 33: Support for OOP in C++ (continued)
	Slide 34: Support for OOP in C++ (continued)
	Slide 35: Support for OOP in C++ (continued)
	Slide 36: Support for OOP in Objective-C
	Slide 37: Support for OOP in Objective-C (continued)
	Slide 38: Support for OOP in Objective-C (continued)
	Slide 39: Support for OOP in Objective-C (continued)
	Slide 40: Support for OOP in Objective-C (continued)
	Slide 41: Support for OOP in Objective-C (continued)
	Slide 42: Support for OOP in Java
	Slide 43: Support for OOP in Java (continued)
	Slide 44: Support for OOP in Java (continued)
	Slide 45: Support for OOP in Java (continued)
	Slide 46: Support for OOP in Java (continued)
	Slide 47: Support for OOP in C#
	Slide 48: Support for OOP in C# (continued)
	Slide 49: Support for OOP in C#
	Slide 50: Support for OOP in C# (continued)
	Slide 51: Support for OOP in C#
	Slide 52: Support for OOP in Ruby
	Slide 53: Support for OOP in Ruby (continued)
	Slide 54: Implementing OO Constructs
	Slide 55: Instance Data Storage
	Slide 56: Dynamic Binding of Methods Calls
	Slide 57: Reflection
	Slide 58: Reflection (continued)
	Slide 59: Reflection in Java
	Slide 60: Reflection in Java (continued)
	Slide 61: Reflection in Java (continued)
	Slide 62: Reflection in C#
	Slide 63: Downsides of Reflection
	Slide 64: Summary

