
ISBN 0-321-49362-1

Chapter 14

Exception Handling
and Event Handling

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 14 Topics

• Introduction to Exception Handling

• Exception Handling in C++

• Exception Handling in Java

• Exception Handling in Python and Ruby

• Introduction to Event Handling

• Event Handling with Java

• Event Handling in C#

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction to Exception Handling

• In a language without exception handling

– When an exception occurs, control goes to the
operating system, where a message is displayed
and the program is terminated

• In a language with exception handling

– Programs are allowed to trap some exceptions,
thereby providing the possibility of fixing the
problem and continuing

Copyright © 2015 Pearson. All rights reserved. 1-4

Basic Concepts

• Many languages allow programs to trap
input/output errors (including EOF)

• An exception is any unusual event, either
erroneous or not, detectable by either hardware or
software, that may require special processing

• The special processing that may be required after
detection of an exception is called exception
handling

• The exception handling code unit is called an
exception handler

Copyright © 2015 Pearson. All rights reserved. 1-5

Exception Handling Alternatives

• An exception is raised when its associated event
occurs

• A language that does not have exception handling
capabilities can still define, detect, raise, and
handle exceptions (user defined, software detected)

• Alternatives:

– Send an auxiliary parameter or use the return value to
indicate the return status of a subprogram

– Pass a label parameter to all subprograms (error return is
to the passed label)

– Pass an exception handling subprogram to all
subprograms

Copyright © 2015 Pearson. All rights reserved. 1-6

Advantages of Built-in Exception
Handling

• Error detection code is tedious to write and
it clutters the program

• Exception handling encourages
programmers to consider many different
possible errors

• Exception propagation allows a high level
of reuse of exception handling code

Copyright © 2015 Pearson. All rights reserved. 1-7

Design Issues

• How and where are exception handlers
specified and what is their scope?

• How is an exception occurrence bound to
an exception handler?

• Can information about the exception be
passed to the handler?

• Where does execution continue, if at all,
after an exception handler completes its
execution? (continuation vs. resumption)

• Is some form of finalization provided?

Copyright © 2015 Pearson. All rights reserved. 1-8

Design Issues (continued)

• How are user-defined exceptions specified?

• Should there be default exception handlers
for programs that do not provide their own?

• Can predefined exceptions be explicitly
raised?

• Are hardware-detectable errors treated as
exceptions that can be handled?

• Are there any predefined exceptions?

• How can exceptions be disabled, if at all?

Copyright © 2015 Pearson. All rights reserved. 1-9

Exception Handling Control Flow

Copyright © 2015 Pearson. All rights reserved. 1-10

Exception Handling in C++

• Added to C++ in 1990

• Design is based on that of CLU, Ada, and
ML

Copyright © 2015 Pearson. All rights reserved. 1-11

C++ Exception Handlers

• Exception Handlers Form:

 try {

 -- code that is expected to raise an exception
 }

 catch (formal parameter) {

 -- handler code

 }

 ...

 catch (formal parameter) {

 -- handler code

 }

Copyright © 2015 Pearson. All rights reserved. 1-12

The catch Function

• catch is the name of all handlers--it is an
overloaded name, so the formal parameter
of each must be unique

• The formal parameter need not have a
variable
– It can be simply a type name to distinguish the

handler it is in from others

• The formal parameter can be used to
transfer information to the handler

• The formal parameter can be an ellipsis, in
which case it handles all exceptions not yet
handled

Copyright © 2015 Pearson. All rights reserved. 1-13

Throwing Exceptions

• Exceptions are all raised explicitly by the
statement:

 throw [expression];

• The brackets are metasymbols

• A throw without an operand can only
appear in a handler; when it appears, it
simply re-raises the exception, which is
then handled elsewhere

• The type of the expression disambiguates
the intended handler

Copyright © 2015 Pearson. All rights reserved. 1-14

Unhandled Exceptions

• An unhandled exception is propagated to
the caller of the function in which it is
raised

• This propagation continues to the main
function

• If no handler is found, the default handler
is called

Copyright © 2015 Pearson. All rights reserved. 1-15

Continuation

• After a handler completes its execution,
control flows to the first statement after
the last handler in the sequence of
handlers of which it is an element

• Other design choices
– All exceptions are user-defined

– Exceptions are neither specified nor declared

– The default handler, unexpected, simply
terminates the program; unexpected can be
redefined by the user

– Functions can list the exceptions they may raise

– Without a specification, a function can raise any
exception (the throw clause)

Copyright © 2015 Pearson. All rights reserved. 1-16

Evaluation

• There are no predefined exceptions

• It is odd that exceptions are not named and
that hardware- and system software-
detectable exceptions cannot be handled

• Binding exceptions to handlers through the
type of the parameter certainly does not
promote readability

Copyright © 2015 Pearson. All rights reserved. 1-17

Exception Handling in Java

• Based on that of C++, but more in line with
OOP philosophy

• All exceptions are objects of classes that
are descendants of the Throwable class

Copyright © 2015 Pearson. All rights reserved. 1-18

Classes of Exceptions

• The Java library includes two subclasses of
Throwable :

– Error

• Thrown by the Java interpreter for events such as heap
overflow

• Never handled by user programs

– Exception

• User-defined exceptions are usually subclasses of this

• Has two predefined subclasses, IOException and

RuntimeException (e.g.,
ArrayIndexOutOfBoundsException and

NullPointerException

Copyright © 2015 Pearson. All rights reserved. 1-19

Java Exception Handlers

• Like those of C++, except every catch
requires a named parameter and all
parameters must be descendants of
Throwable

• Syntax of try clause is exactly that of C++

• Exceptions are thrown with throw, as in
C++, but often the throw includes the new
operator to create the object, as in:

 throw new MyException();

Copyright © 2015 Pearson. All rights reserved. 1-20

Binding Exceptions to Handlers

• Binding an exception to a handler is
simpler in Java than it is in C++

– An exception is bound to the first handler with a
parameter is the same class as the thrown
object or an ancestor of it

• An exception can be handled and rethrown
by including a throw in the handler (a
handler could also throw a different
exception)

Copyright © 2015 Pearson. All rights reserved. 1-21

Continuation

• If no handler is found in the try construct, the
search is continued in the nearest enclosing try
construct, etc.

• If no handler is found in the method, the exception
is propagated to the method’s caller

• If no handler is found (all the way to main), the
program is terminated

• To insure that all exceptions are caught, a handler
can be included in any try construct that catches
all exceptions

– Simply use an Exception class parameter

– Of course, it must be the last in the try construct

Copyright © 2015 Pearson. All rights reserved. 1-22

Checked and Unchecked Exceptions

• The Java throws clause is quite different
from the throw clause of C++

• Exceptions of class Error and
RunTimeException and all of their
descendants are called unchecked
exceptions; all other exceptions are called
checked exceptions

• Checked exceptions that may be thrown by
a method must be either:
– Listed in the throws clause, or

– Handled in the method

Copyright © 2015 Pearson. All rights reserved. 1-23

Other Design Choices

• A method cannot declare more exceptions in its
throws clause than the method it overrides

• A method that calls a method that lists a particular
checked exception in its throws clause has three
alternatives for dealing with that exception:

– Catch and handle the exception

– Catch the exception and throw an exception that is listed
in its own throws clause

– Declare it in its throws clause and do not handle it

Copyright © 2015 Pearson. All rights reserved. 1-24

The finally Clause

• Can appear at the end of a try construct

• Form:

finally {

...

}

• Purpose: To specify code that is to be
executed, regardless of what happens in
the try construct

Copyright © 2015 Pearson. All rights reserved. 1-25

Example

• A try construct with a finally clause can be used
outside exception handling

 try {

 for (index = 0; index < 100; index++) {

 …
 if (…) {

 return;

 } //** end of if

 } //** end of try clause

 finally {

 …
 } //** end of try construct

Copyright © 2015 Pearson. All rights reserved. 1-26

Assertions

• Statements in the program declaring a boolean
expression regarding the current state of the
computation

• When evaluated to true nothing happens

• When evaluated to false an AssertionError
exception is thrown

• Can be disabled during runtime without program
modification or recompilation

• Two forms

– assert condition;

– assert condition: expression;

Copyright © 2015 Pearson. All rights reserved. 1-27

Evaluation

• The types of exceptions makes more sense
than in the case of C++

• The throws clause is better than that of
C++ (The throw clause in C++ says little to
the programmer)

• The finally clause is often useful

• The Java interpreter throws a variety of
exceptions that can be handled by user
programs

Exception Handling in Python

• Exceptions are objects; the base class is
BaseException

• All predefined and user-defined exceptions
are derived from Exception

• Predefined subclasses of Exception are
ArithmeticError (subclasses are OverflowError,
ZeroDivisionError, and FloatingPointError) and
LookupError (subclasses are IndexError and
KeyError)

Copyright © 2015 Pearson. All rights reserved. 1-28

Exception Handling in Python
(continued)

try:

 - The try block

except Exception1:

 - Handler for Exception1

except Exception2:

 - Handler for Exception2

...

else:

 - The else block (no exception is raised)

finally:

 - the finally block (do it no matter what)

Copyright © 2015 Pearson. All rights reserved. 1-29

Exception Handling in Python
(continued)

• Handlers handle the named exception plus
all subclasses of that exception, so if the
named exception is Exception, it handlers all
predefined and user-defined exceptions

• Unhandled exceptions are propagated to
the nearest enclosing try block; if no
handler is found, the default handler is
called

• Raise IndexError creates an instance
• The raised exception object can be gotten:
 except Exception as ex_obj:

Copyright © 2015 Pearson. All rights reserved. 1-30

Exception Handling in Python
(continued)

• The assert statement tests its Boolean
expression (first parameter) and sends its
second parameter to the constructor for the
exception object to be raised

 assert test, data

Copyright © 2015 Pearson. All rights reserved. 1-31

Exception Handling in Ruby

• Exceptions are objects

• There are many predefined exceptions

• All exceptions that are user handled are
either StandardError class or a subclass of it

• StandardError is derived from Exception, which
has two methods, message and backtrace

• Exceptions can be raised with raise, which
often has the form:

 raise ″bad parameter″ if count == 0

Copyright © 2015 Pearson. All rights reserved. 1-32

Exception Handling in Ruby (continued)

• Handlers are placed at the end of a begin-
end block of code; introduced by rescue

 begin
 - Statements in the block

 rescue

 - Handler

 end

• The block could include else and/or ensure
clauses, which are like else and finally in
Java

Copyright © 2015 Pearson. All rights reserved. 1-33

Exception Handling in Ruby (continued)

• Unlike the other languages we have
discussed, in Ruby the code that raised an
exception can be rerun by placing a retry
statement at the end of the handler

Copyright © 2015 Pearson. All rights reserved. 1-34

Copyright © 2015 Pearson. All rights reserved. 1-35

Introduction to Event Handling

• An event is a notification that something
specific has occurred, such as a mouse
click on a graphical button

• The event handler is a segment of code that
is executed in response to an event

Copyright © 2015 Pearson. All rights reserved. 1-36

Java Swing GUI Components

• Text box is an object of class JTextField

• Radio button is an object of class JRadioButton

• Applet’s display is a frame, a multilayered
structure

• Content pane is one layer, where applets put
output

• GUI components can be placed in a frame

• Layout manager objects are used to control the
placement of components

Copyright © 2015 Pearson. All rights reserved. 1-37

The Java Event Model

• User interactions with GUI components
create events that can be caught by event
handlers, called event listeners

• An event generator tells a listener of an
event by sending a message

• An interface is used to make event-
handling methods conform to a standard
protocol

• A class that implements a listener must
implement an interface for the listener

Copyright © 2015 Pearson. All rights reserved. 1-38

The Java Event Model (continued)

• One class of events is ItemEvent, which is
associated with the event of clicking a
checkbox, a radio button, or a list item

• The ItemListener interface prescribes a
method, itemStateChanged, which is a
handler for ItemEvent events

• The listener is created with addItemListener

Event Handling in C#

• Event handling in C# (and the other .NET
languages) is similar to that in Java

• .NET has two approaches, Windows Forms and
Windows Presentation Foundation—we cover only
the former (which is the original approach)

• An application subclasses the Form predefined class
(defined in System.Windows.Forms)

• There is no need to create a frame or panel in
which to place the GUI components

• Label objects are used to place text in the window

• Radio buttons are objects of the RadioButton class

Copyright © 2015 Pearson. All rights reserved. 1-39

Event Handling in C# (continued)

• Components are positioned by assigning a
new Point object to the Location property of
the component

 private RadioButton plain = new RadioButton();
 plain.Location = new Point(100, 300);

 plain.Text = ″Plain″;

 controls.Add(plain);

• All C# event handlers have the same
protocol, the return type is void and the two
parameters are of types object and EventArgs

Copyright © 2015 Pearson. All rights reserved. 1-40

Event Handling in C# (continued)

• An event handler can have any name

• A radio button is tested with the Boolean
Checked property of the button

 private void rb_CheckedChanged (object o,
 EventArgs e) {

 if (plain.Checked) …

 ...

 }

• To register an event, a new EventHandler
object must be created and added to the
predefined delegate for the event

Copyright © 2015 Pearson. All rights reserved. 1-41

Event Handling in C# (continued)

• When a radio button changes from
unchecked to checked, the CheckedChanged
event is raised

• The associated delegate is referenced by
the name of the event

• If the handler was named rb_CheckedChanged,
we could register it on the radio button
named plain with:

 plain.CheckedChanged +=
 new EventHandler (rb_CheckedChanged);

Copyright © 2015 Pearson. All rights reserved. 1-42

Copyright © 2015 Pearson. All rights reserved. 1-43

Summary

• Ada provides extensive exception-handling facilities with a
comprehensive set of built-in exceptions.

• C++ includes no predefined exceptions

• Exceptions are bound to handlers by connecting the type of
expression in the throw statement to that of the formal
parameter of the catch function

• Java exceptions are similar to C++ exceptions except that a
Java exception must be a descendant of the Throwable class.
Additionally Java includes a finally clause

• An event is a notification that something has occurred that
requires handling by an event handler

• Java event handling is defined on the Swing components

• C# event handling is the .NET model, which is similar to the
Java model

	Slide 1: Chapter 14
	Slide 2: Chapter 14 Topics
	Slide 3: Introduction to Exception Handling
	Slide 4: Basic Concepts
	Slide 5: Exception Handling Alternatives
	Slide 6: Advantages of Built-in Exception Handling
	Slide 7: Design Issues
	Slide 8: Design Issues (continued)
	Slide 9: Exception Handling Control Flow
	Slide 10: Exception Handling in C++
	Slide 11: C++ Exception Handlers
	Slide 12: The catch Function
	Slide 13: Throwing Exceptions
	Slide 14: Unhandled Exceptions
	Slide 15: Continuation
	Slide 16: Evaluation
	Slide 17: Exception Handling in Java
	Slide 18: Classes of Exceptions
	Slide 19: Java Exception Handlers
	Slide 20: Binding Exceptions to Handlers
	Slide 21: Continuation
	Slide 22: Checked and Unchecked Exceptions
	Slide 23: Other Design Choices
	Slide 24: The finally Clause
	Slide 25: Example
	Slide 26: Assertions
	Slide 27: Evaluation
	Slide 28: Exception Handling in Python
	Slide 29: Exception Handling in Python (continued)
	Slide 30: Exception Handling in Python (continued)
	Slide 31: Exception Handling in Python (continued)
	Slide 32: Exception Handling in Ruby
	Slide 33: Exception Handling in Ruby (continued)
	Slide 34: Exception Handling in Ruby (continued)
	Slide 35: Introduction to Event Handling
	Slide 36: Java Swing GUI Components
	Slide 37: The Java Event Model
	Slide 38: The Java Event Model (continued)
	Slide 39: Event Handling in C#
	Slide 40: Event Handling in C# (continued)
	Slide 41: Event Handling in C# (continued)
	Slide 42: Event Handling in C# (continued)
	Slide 43: Summary

