
ISBN 0-321-49362-1

Chapter 15

Functional
Programming
Languages

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 15 Topics

• Introduction

• Mathematical Functions

• Fundamentals of Functional Programming Languages

• The First Functional Programming Language: Lisp

• Introduction to Scheme

• Common Lisp

• ML

• Haskell

• F#

• Support for Functional Programming in Primarily
Imperative Languages

• Comparison of Functional and Imperative Languages

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction

• The design of the imperative languages is
based directly on the von Neumann
architecture
– Efficiency is the primary concern, rather than

the suitability of the language for software
development

• The design of the functional languages is
based on mathematical functions
– A solid theoretical basis that is also closer to the

user, but relatively unconcerned with the
architecture of the machines on which programs
will run

Copyright © 2015 Pearson. All rights reserved. 1-4

Mathematical Functions

• A mathematical function is a mapping of
members of one set, called the domain set,
to another set, called the range set

• A lambda expression specifies the
parameter(s) and the mapping of a function
in the following form

 (x) x * x * x

 for the function cube(x) = x * x * x

Copyright © 2015 Pearson. All rights reserved. 1-5

Lambda Expressions

• Lambda expressions describe nameless
functions

• Lambda expressions are applied to
parameter(s) by placing the parameter(s)
after the expression

 e.g., ((x) x * x * x)(2)

 which evaluates to 8

Copyright © 2015 Pearson. All rights reserved. 1-6

Functional Forms

• A higher-order function, or functional
form, is one that either takes functions as
parameters or yields a function as its result,
or both

Copyright © 2015 Pearson. All rights reserved. 1-7

Function Composition

• A functional form that takes two functions
as parameters and yields a function whose
value is the first actual parameter function
applied to the application of the second

 Form: h  f ° g

 which means h (x)  f (g (x))

 For f (x)  x + 2 and g (x)  3 * x,

 h  f ° g yields (3 * x)+ 2

Copyright © 2015 Pearson. All rights reserved. 1-8

Apply-to-all

• A functional form that takes a single
function as a parameter and yields a list of
values obtained by applying the given
function to each element of a list of
parameters

 Form: 

 For h(x)  x * x

 (h, (2, 3, 4)) yields (4, 9, 16)

Copyright © 2015 Pearson. All rights reserved. 1-9

Fundamentals of Functional
Programming Languages

• The objective of the design of a FPL is to mimic
mathematical functions to the greatest extent possible

• The basic process of computation is fundamentally
different in a FPL than in an imperative language

– In an imperative language, operations are done and the
results are stored in variables for later use

– Management of variables is a constant concern and
source of complexity for imperative programming

• In an FPL, variables are not necessary, as is the case in
mathematics

• Referential Transparency - In an FPL, the evaluation of a
function always produces the same result given the

same parameters

Copyright © 2015 Pearson. All rights reserved. 1-10

Lisp Data Types and Structures

• Data object types: originally only atoms and
lists

• List form: parenthesized collections of
sublists and/or atoms

 e.g., (A B (C D) E)

• Originally, Lisp was a typeless language

• Lisp lists are stored internally as single-
linked lists

Copyright © 2015 Pearson. All rights reserved. 1-11

Lisp Interpretation

• Lambda notation is used to specify functions and
function definitions. Function applications and data
have the same form.

 e.g., If the list (A B C) is interpreted as data it is

 a simple list of three atoms, A, B, and C

 If it is interpreted as a function application,

 it means that the function named A is

 applied to the two parameters, B and C

• The first Lisp interpreter appeared only as a
demonstration of the universality of the
computational capabilities of the notation

Copyright © 2015 Pearson. All rights reserved. 1-12

Origins of Scheme

• A mid-1970s dialect of Lisp, designed to
be a cleaner, more modern, and simpler
version than the contemporary dialects of
Lisp

• Uses only static scoping

• Functions are first-class entities

– They can be the values of expressions and
elements of lists

– They can be assigned to variables, passed as
parameters, and returned from functions

The Scheme Interpreter

• In interactive mode, the Scheme interpreter
is an infinite read-evaluate-print loop
(REPL)

– This form of interpreter is also used by Python
and Ruby

• Expressions are interpreted by the function
EVAL

• Literals evaluate to themselves

Copyright © 2015 Pearson. All rights reserved. 1-13

Copyright © 2015 Pearson. All rights reserved. 1-14

Primitive Function Evaluation

• Parameters are evaluated, in no particular
order

• The values of the parameters are
substituted into the function body

• The function body is evaluated

• The value of the last expression in the
body is the value of the function

Copyright © 2015 Pearson. All rights reserved. 1-15

Primitive Functions & LAMBDA Expressions

• Primitive Arithmetic Functions: +, -, *, /, ABS, SQRT,
 REMAINDER, MIN, MAX
 e.g., (+ 5 2) yields 7

• Lambda Expressions

– Form is based on  notation

 e.g., (LAMBDA (x) (* x x)

 x is called a bound variable

• Lambda expressions can be applied to parameters

 e.g., ((LAMBDA (x) (* x x)) 7)

• LAMBDA expressions can have any number of parameters

 (LAMBDA (a b x) (+ (* a x x) (* b x)))

Copyright © 2015 Pearson. All rights reserved. 1-16

Special Form Function: DEFINE

• DEFINE - Two forms:

1. To bind a symbol to an expression

 e.g., (DEFINE pi 3.141593)

 Example use: (DEFINE two_pi (* 2 pi))

 These symbols are not variables – they are like the names
bound by Java’s final declarations

2. To bind names to lambda expressions (LAMBDA is
implicit)

 e.g., (DEFINE (square x) (* x x))

 Example use: (square 5)

- The evaluation process for DEFINE is different! The first
parameter is never evaluated. The second parameter is
evaluated and bound to the first parameter.

Copyright © 2015 Pearson. All rights reserved. 1-17

Output Functions

• Usually not needed, because the interpreter
always displays the result of a function
evaluated at the top level (not nested)

• Scheme has PRINTF, which is similar to the
printf function of C

• Note: explicit input and output are not part
of the pure functional programming model,
because input operations change the state
of the program and output operations are
side effects

Copyright © 2015 Pearson. All rights reserved. 1-18

Numeric Predicate Functions

• #T (or #t) is true and #F (or #f) is false
(sometimes () is used for false)

• =, <>, >, <, >=, <=

• EVEN?, ODD?, ZERO?, NEGATIVE?

• The NOT function inverts the logic of a
Boolean expression

Copyright © 2015 Pearson. All rights reserved. 1-19

Control Flow

• Selection- the special form, IF

 (IF predicate then_exp else_exp)

 (IF (<> count 0)

 (/ sum count)

)

• Recall from Chapter 8 the COND function:
(DEFINE (leap? year)

 (COND

 ((ZERO? (MODULO year 400)) #T)

 ((ZERO? (MODULO year 100)) #F)

 (ELSE (ZERO? (MODULO year 4)))

))

Copyright © 2015 Pearson. All rights reserved. 1-20

List Functions

• QUOTE - takes one parameter; returns the
parameter without evaluation
– QUOTE is required because the Scheme interpreter,

named EVAL, always evaluates parameters to function
applications before applying the function. QUOTE is
used to avoid parameter evaluation when it is not
appropriate

– QUOTE can be abbreviated with the apostrophe prefix
operator

 '(A B) is equivalent to (QUOTE (A B))

• Recall that CAR, CDR, and CONS were covered in
Chapter 6

Copyright © 2015 Pearson. All rights reserved. 1-21

List Functions (continued)

• Examples:

 (CAR ′((A B) C D)) returns (A B)

 (CAR ′A) is an error

 (CDR ′((A B) C D)) returns (C D)

 (CDR ′A) is an error

 (CDR ′(A)) returns ()

 (CONS ′() ′(A B)) returns (() A B)

 (CONS ′(A B) ′(C D)) returns ((A B) C D)

 (CONS ′A ′B) returns (A . B) (a dotted pair)

List Functions (continued)

• LIST is a function for building a list from
any number of parameters

 (LIST ′apple ′orange ′grape) returns

 (apple orange grape)

Copyright © 2015 Pearson. All rights reserved. 1-22

Copyright © 2015 Pearson. All rights reserved. 1-23

Predicate Function: EQ?

• EQ? takes two expressions as parameters
(usually two atoms); it returns #T if both
parameters have the same pointer value;
otherwise #F

 (EQ? 'A 'A) yields #T

 (EQ? 'A 'B) yields #F

 (EQ? 'A '(A B)) yields #F

 (EQ? '(A B) '(A B)) yields #T or #F

 (EQ? 3.4 (+ 3 0.4))) yields #T or #F

Predicate Function: EQV?

• EQV? is like EQ?, except that it works for both
symbolic and numeric atoms; it is a value
comparison, not a pointer comparison

 (EQV? 3 3) yields #T

 (EQV? 'A 3) yields #F

 (EQV 3.4 (+ 3 0.4)) yields #T

 (EQV? 3.0 3) yields #F (floats and integers are
different)

Copyright © 2015 Pearson. All rights reserved. 1-24

Copyright © 2015 Pearson. All rights reserved. 1-25

Predicate Functions: LIST? and NULL?

• LIST? takes one parameter; it returns #T if the
parameter is a list; otherwise #F

 (LIST? '()) yields #T

• NULL? takes one parameter; it returns #T if the
parameter is the empty list; otherwise #F

 (NULL? '(())) yields #F

Copyright © 2015 Pearson. All rights reserved. 1-26

Example Scheme Function: member

• member takes an atom and a simple list;
returns #T if the atom is in the list; #F
otherwise

 DEFINE (member atm a_list)

 (COND

 ((NULL? a_list) #F)

 ((EQ? atm (CAR lis)) #T)

 ((ELSE (member atm (CDR a_list)))

))

Copyright © 2015 Pearson. All rights reserved. 1-27

Example Scheme Function: equalsimp

• equalsimp takes two simple lists as parameters;
returns #T if the two simple lists are equal; #F
otherwise

 (DEFINE (equalsimp list1 list2)

 (COND

 ((NULL? list1) (NULL? list2))

 ((NULL? list2) #F)

 ((EQ? (CAR list1) (CAR list2))

 (equalsimp(CDR list1)(CDR list2)))

 (ELSE #F)

))

Copyright © 2015 Pearson. All rights reserved. 1-28

Example Scheme Function: equal

• equal takes two general lists as parameters;
returns #T if the two lists are equal; #F otherwise

 (DEFINE (equal list1 list2)

 (COND

 ((NOT (LIST? list1))(EQ? list1 list2))

 ((NOT (LIST? lis2)) #F)

 ((NULL? list1) (NULL? list2))

 ((NULL? list2) #F)

 ((equal (CAR list1) (CAR list2))

 (equal (CDR list1) (CDR list2)))

 (ELSE #F)

))

Copyright © 2015 Pearson. All rights reserved. 1-29

Example Scheme Function: append

• append takes two lists as parameters; returns the
first parameter list with the elements of the second
parameter list appended at the end

 (DEFINE (append list1 list2)

 (COND

 ((NULL? list1) list2)

 (ELSE (CONS (CAR list1)

 (append (CDR list1) list2)))

))

Copyright © 2015 Pearson. All rights reserved. 1-30

Example Scheme Function: LET

• Recall that LET was discussed in Chapter 5

• LET is actually shorthand for a LAMBDA

expression applied to a parameter

 (LET ((alpha 7))(* 5 alpha))

 is the same as:

 ((LAMBDA (alpha) (* 5 alpha)) 7)

Copyright © 2015 Pearson. All rights reserved. 1-31

LET Example

(DEFINE (quadratic_roots a b c)

 (LET (

 (root_part_over_2a

 (/ (SQRT (- (* b b) (* 4 a c)))(* 2 a)))

 (minus_b_over_2a (/ (- 0 b) (* 2 a)))

 (LIST (+ minus_b_over_2a root_part_over_2a))

 (- minus_b_over_2a root_part_over_2a))

))

Tail Recursion in Scheme

• Definition: A function is tail recursive if its
recursive call is the last operation in the
function

• A tail recursive function can be
automatically converted by a compiler to
use iteration, making it faster

• Scheme language definition requires that
Scheme language systems convert all tail
recursive functions to use iteration

Copyright © 2015 Pearson. All rights reserved. 1-32

Tail Recursion in Scheme - continued

• Example of rewriting a function to make it
tail recursive, using helper a function

 Original: (DEFINE (factorial n)
 (IF (<= n 0)

 1

 (* n (factorial (- n 1)))

))

 Tail recursive: (DEFINE (facthelper n factpartial)

 (IF (<= n 0)

 factpartial

 facthelper((- n 1) (* n factpartial)))

))

 (DEFINE (factorial n)

 (facthelper n 1))

Copyright © 2015 Pearson. All rights reserved. 1-33

Copyright © 2015 Pearson. All rights reserved. 1-34

Functional Form - Composition

• Composition

– If h is the composition of f and g, h(x) = f(g(x))

 (DEFINE (g x) (* 3 x))

 (DEFINE (f x) (+ 2 x))

 (DEFINE h x) (+ 2 (* 3 x))) (The composition)

– In Scheme, the functional composition function compose
can be written:

 (DEFINE (compose f g) (LAMBDA (x) (f (g x))))

 ((compose CAR CDR) '((a b) c d)) yields c

 (DEFINE (third a_list)

 ((compose CAR (compose CDR CDR)) a_list))

 is equivalent to CADDR

Functional Form – Apply-to-All

• Apply to All - one form in Scheme is map

– Applies the given function to all elements of the given list;

 (DEFINE (map fun a_list)

 (COND

 ((NULL? a_list) '())

 (ELSE (CONS (fun (CAR a_list))

 (map fun (CDR a_list))))

))

(map (LAMBDA (num) (* num num num)) '(3 4 2 6)) yields

(27 64 8 216)

Copyright © 2015 Pearson. All rights reserved. 1-35

Copyright © 2015 Pearson. All rights reserved. 1-36

Functions That Build Code

• It is possible in Scheme to define a function
that builds Scheme code and requests its
interpretation

• This is possible because the interpreter is a
user-available function, EVAL

Copyright © 2015 Pearson. All rights reserved. 1-37

Adding a List of Numbers

((DEFINE (adder a_list)

 (COND

 ((NULL? a_list) 0)

 (ELSE (EVAL (CONS '+ a_list)))

))

• The parameter is a list of numbers to be added;
adder inserts a + operator and evaluates the
resulting list
– Use CONS to insert the atom + into the list of numbers.

– Be sure that + is quoted to prevent evaluation

– Submit the new list to EVAL for evaluation

Copyright © 2015 Pearson. All rights reserved. 1-38

Common Lisp

• A combination of many of the features of the
popular dialects of Lisp around in the early 1980s

• A large and complex language--the opposite of
Scheme

• Features include:
– records

– arrays

– complex numbers

– character strings

– powerful I/O capabilities

– packages with access control

– iterative control statements

Common Lisp (continued)

• Macros

– Create their effect in two steps:

• Expand the macro

• Evaluate the expanded macro

• Some of the predefined functions of
Common Lisp are actually macros

• Users can define their own macros with
DEFMACRO

Copyright © 2015 Pearson. All rights reserved. 1-39

Common Lisp (continued)

• Backquote operator (`)

– Similar to the Scheme’s QUOTE, except that some
parts of the parameter can be unquoted by
preceding them with commas

 `(a (* 3 4) c) evaluates to (a (* 3 4) c)

 `(a ,(* 3 4) c) evaluates to (a 12 c)

Copyright © 2015 Pearson. All rights reserved. 1-40

Common Lisp (continued)

• Reader Macros
– Lisp implementations have a front end called the reader

that transforms Lisp into a code representation. Then
macro calls are expanded into the code representation.

– A reader macro is a special kind of macro that is
expanded during the reader phase

– A reader macro is a definition of a single character, which
is expanded into its Lisp definition

– An example of a reader macro is an apostrophe character,
which is expanded into a call to QUOTE

– Users can define their own reader macros as a kind of
shorthand

Copyright © 2015 Pearson. All rights reserved. 1-41

Common Lisp (continued)

• Common Lisp has a symbol data type
(similar to that of Ruby)

– The reserved words are symbols that evaluate to
themselves

– Symbols are either bound or unbound

• Parameter symbols are bound while the function is
being evaluated

• Symbols that are the names of imperative style
variables that have been assigned values are bound

• All other symbols are unbound

Copyright © 2015 Pearson. All rights reserved. 1-42

Copyright © 2015 Pearson. All rights reserved. 1-43

ML

• A static-scoped functional language with syntax
that is closer to Pascal than to Lisp

• Uses type declarations, but also does type
inferencing to determine the types of undeclared
variables

• It is strongly typed (whereas Scheme is essentially
typeless) and has no type coercions

• Does not have imperative-style variables

• Its identifiers are untyped names for values

• Includes exception handling and a module facility
for implementing abstract data types

• Includes lists and list operations

Copyright © 2015 Pearson. All rights reserved. 1-44

ML Specifics

• A table called the evaluation environment stores
the names of all identifiers in a program, along
with their types (like a run-time symbol table)

• Function declaration form:

 fun name (formal parameters) = expression;

 e.g., fun cube(x : int) = x * x * x;

- The type could be attached to return value, as in
 fun cube(x) : int = x * x * x;

- With no type specified, it would default to

 int (the default for numeric values)
- User-defined overloaded functions are not
allowed, so if we wanted a cube function for real
parameters, it would need to have a different name

Copyright © 2015 Pearson. All rights reserved. 1-45

ML Specifics (continued)

• ML selection
 if expression then then_expression
 else else_expression

 where the first expression must evaluate to a
Boolean value

• Pattern matching is used to allow a function
to operate on different parameter forms
 fun fact(0) = 1

 | fact(1) = 1

 | fact(n : int) : int = n * fact(n – 1)

Copyright © 2015 Pearson. All rights reserved. 1-46

ML Specifics (continued)

• Lists
 Literal lists are specified in brackets
 [3, 5, 7]
 [] is the empty list
 CONS is the binary infix operator, ::
 4 :: [3, 5, 7], which evaluates to [4, 3, 5, 7]
 CAR is the unary operator hd
 CDR is the unary operator tl
 fun length([]) = 0
 | length(h :: t) = 1 + length(t);

 fun append([], lis2) = lis2

 | append(h :: t, lis2) = h :: append(t, lis2);

Copyright © 2015 Pearson. All rights reserved. 1-47

ML Specifics (continued)

• The val statement binds a name to a value
(similar to DEFINE in Scheme)
 val distance = time * speed;
– As is the case with DEFINE, val is nothing like an

assignment statement in an imperative language

– If there are two val statements for the same
identifier, the first is hidden by the second

– val statements are often used in let constructs

 let
 val radius = 2.7

 val pi = 3.14159

 in

 pi * radius * radius

 end;

ML Specifics (continued)

• filter

– A higher-order filtering function for lists

– Takes a predicate function as its parameter,
often in the form of a lambda expression

– Lambda expressions are defined like functions,
except with the reserved word fn

 filter(fn(x) => x < 100, [25, 1, 711, 50, 100]);

 This returns [25, 1, 50]

Copyright © 2015 Pearson. All rights reserved. 1-48

ML Specifics (continued)

• map

– A higher-order function that takes a single
parameter, a function

– Applies the parameter function to each element
of a list and returns a list of results

 fun cube x = x * x * x;

 val cubeList = map cube;

 val newList = cubeList [1, 3, 5];

 This sets newList to [1, 27, 125]

- Alternative: use a lambda expression

val newList = map (fn x => x * x * x, [1, 3, 5]);

Copyright © 2015 Pearson. All rights reserved. 1-49

ML Specifics (continued)

• Function Composition

– Use the unary operator, o

 val h = g o f;

Copyright © 2015 Pearson. All rights reserved. 1-50

ML Specifics (continued)

• Currying
– ML functions actually take just one parameter—if more

are given, it considers the parameters a tuple (commas
required)

– Process of currying replaces a function with more than
one parameter with a function with one parameter that
returns a function that takes the other parameters of the
original function

– An ML function that takes more than one parameter can
be defined in curried form by leaving out the commas in
the parameters

 fun add a b = a + b;

 A function with one parameter, a. Returns a function that
takes b as a parameter. Call: add 3 5;

Copyright © 2015 Pearson. All rights reserved. 1-51

ML Specifics (continued)

• Partial Evaluation

– Curried functions can be used to create new
functions by partial evaluation

– Partial evaluation means that the function is
evaluated with actual parameters for one or
more of the leftmost actual parameters

 fun add5 x add 5 x;

 Takes the actual parameter 5 and evaluates the
add function with 5 as the value of its first formal
parameter. Returns a function that adds 5 to its
single parameter

 val num = add5 10; (* sets num to 15 *)

Copyright © 2015 Pearson. All rights reserved. 1-52

Copyright © 2015 Pearson. All rights reserved. 1-53

Haskell

• Similar to ML (syntax, static scoped, strongly typed, type
inferencing, pattern matching)

• Different from ML (and most other functional languages) in
that it is purely functional (e.g., no variables, no assignment
statements, and no side effects of any kind)

Syntax differences from ML
 fact 0 = 1

 fact 1 = 1

 fact n = n * fact (n – 1)

 fib 0 = 1

 fib 1 = 1

 fib (n + 2) = fib (n + 1) + fib n

Copyright © 2015 Pearson. All rights reserved. 1-54

Function Definitions with Different
Parameter Ranges

fact n

 | n == 0 = 1

 | n == 1 = 1

 | n > 0 = n * fact(n – 1)

sub n

 | n < 10 = 0

 | n > 100 = 2

 | otherwise = 1

square x = x * x

 - Because Haskell support polymorphism, this

 works for any numeric type of x

Copyright © 2015 Pearson. All rights reserved. 1-55

Haskell Lists

• List notation: Put elements in brackets
 e.g., directions = ["north", "south", "east",
 "west"]

• Length: #
 e.g., #directions is 4
• Arithmetic series with the .. operator
 e.g., [2, 4..10] is [2, 4, 6, 8, 10]
• Catenation is with ++
 e.g., [1, 3] ++ [5, 7] results in [1, 3, 5, 7]
• CONS, CAR, CDR via the colon operator
 e.g., 1:[3, 5, 7] results in [1, 3, 5, 7]

Copyright © 2015 Pearson. All rights reserved. 1-56

Haskell (continued)

• Pattern Parameters
 product [] = 1

 product (a:x) = a * product x

– Factorial:
 fact n = product [1..n]

• List Comprehensions (Chapter 6)
 [n * n * n | n <- [1..50]]
 The qualifier in this example has the form of a

generator. It could be in the form of a test
 factors n = [i | i <- [1..n `div` 2], n `mod` i == 0]
 The backticks specify the function is used as a

binary operator

Copyright © 2015 Pearson. All rights reserved. 1-57

Quicksort

sort [] = []

sort (h:t) =

 sort [b | b ← t; b <= h]

 ++ [h] ++

 sort [b | b ← t; b > h]

Illustrates the concision of Haskell

Copyright © 2015 Pearson. All rights reserved. 1-58

Lazy Evaluation

• A language is strict if it requires all actual parameters to be
fully evaluated

• A language is nonstrict if it does not have the strict
requirement

• Nonstrict languages are more efficient and allow some
interesting capabilities – infinite lists

• Lazy evaluation - Only compute those values that are
necessary

• Positive numbers
 positives = [0..]

• Determining if 16 is a square number
 member [] b = False

 member(a:x) b=(a == b)||member x b

 squares = [n * n | n ← [0..]]

 member squares 16

Copyright © 2015 Pearson. All rights reserved. 1-59

Member Revisited

• The member function could be written as:

 member b [] = False

 member b (a:x)=(a == b) || member b x

• However, this would only work if the parameter to
squares was a perfect square; if not, it will keep
generating them forever. The following version will
always work:

 member2 n (m:x)

 | m < n = member2 n x

 | m == n = True

 | otherwise = False

F#

• Based on Ocaml, which is a descendant of ML and
Haskell

• Fundamentally a functional language, but with
imperative features and supports OOP

• Has a full-featured IDE, an extensive library of
utilities, and interoperates with other .NET
languages

• Includes tuples, lists, discriminated unions,
records, and both mutable and immutable arrays

• Supports generic sequences, whose values can be
created with generators and through iteration

Copyright © 2015 Pearson. All rights reserved. 1-60

F# (continued)

• Sequences

 let x = seq {1..4};;

– Generation of sequence values is lazy

 let y = seq {0..10000000};;

 Sets y to [0; 1; 2; 3;…]

– Default stepsize is 1, but it can be any number

 let seq1 = seq {1..2..7}

 Sets seq1 to [1; 3; 5; 7]

– Iterators – not lazy for lists and arrays

let cubes = seq {for i in 1..4 -> (i, i * i * i)};;

 Sets cubes to [(1, 1); (2, 8); (3, 27); (4, 64)]

Copyright © 2015 Pearson. All rights reserved. 1-61

F# (continued)

• Functions

– If named, defined with let; if lambda
expressions, defined with fun

 (fun a b -> a / b)

– No difference between a name defined with let
and a function without parameters

– The extent of a function is defined by
indentation

 let f =

 let pi = 3.14159

 let twoPi = 2.0 * pi;;

Copyright © 2015 Pearson. All rights reserved. 1-62

F# (continued)

• Functions (continued)

– If a function is recursive, its definition must
include the rec reserved word

– Names in functions can be outscoped, which
ends their scope

 let x4 =

 let x = x * x

 let x = x * x

 The first let in the body of the function creates
a new version of x; this terminates the scope of
the parameter; The second let in the body
creates another x, terminating the scope of the
second x

Copyright © 2015 Pearson. All rights reserved. 1-63

F# (continued)

• Functional Operators

– Pipeline (|>)

– A binary operator that sends the value of its left
operand to the last parameter of the call (the
right operand)

 let myNums = [1; 2; 3; 4; 5]

 let evensTimesFive = myNums

 |> List.filter (fun n -> n % 2 = 0)

 |> List.map (fun n -> 5 * n)

 The return value is [10; 20]

ll

– ;lkj;
Copyright © 2015 Pearson. All rights reserved. 1-64

F# (continued)

• Functional Operators (continued)

– Composition (>>)

• Builds a function that applies its left operand to a
given parameter (a function) and then passes the
result returned from the function to its right
operand (another function)

 The F# expression (f >> g) x is equivalent to the
mathematical expression g(f(x))

• Curried Functions

 let add a b = a + b;;
 let add5 = add 5;;

Copyright © 2015 Pearson. All rights reserved. 1-65

F# (continued)

• Why F# is Interesting:

– It builds on previous functional languages

– It supports virtually all programming
methodologies in widespread use today

– It is the first functional language that is
designed for interoperability with other widely
used languages

– At its release, it had an elaborate and well-
developed IDE and library of utility software

Copyright © 2015 Pearson. All rights reserved. 1-66

Copyright © 2015 Pearson. All rights reserved. 1-67

Support for Functional Programming in
Primarily Imperative Languages

• Support for functional programming is
increasingly creeping into imperative
languages

– Anonymous functions (lambda expressions)

• JavaScript: leave the name out of a function
definition

• C#: i => (i % 2) == 0 (returns true or false
depending on whether the parameter is even or
odd)

• Python: lambda a, b : 2 * a - b

Support for Functional Programming in
Primarily Imperative Languages (continued)

• Python supports the higher-order functions filter
and map (often use lambda expressions as their
first parameters)

 map(lambda x : x ** 3, [2, 4, 6, 8])
 Returns [8, 64, 216, 512]

• Python supports partial function applications

 from operator import add
 add5 = partial (add, 5)

 (the first line imports add as a function)

 Use: add5(15)

Copyright © 2015 Pearson. All rights reserved. 1-68

Support for Functional Programming in
Primarily Imperative Languages (continued)

• Ruby Blocks

– Are effectively subprograms that are sent to
methods, which makes the method a higher-
order subprogram

– A block can be converted to a subprogram
object with lambda

 times = lambda {|a, b| a * b}

 Use: x = times.(3, 4) (sets x to 12)

– Times can be curried with

 times5 = times.curry.(5)

 Use: x5 = times5.(3) (sets x5 to 15)

Copyright © 2015 Pearson. All rights reserved. 1-69

Copyright © 2015 Pearson. All rights reserved. 1-70

Comparing Functional and Imperative
Languages

• Imperative Languages:
– Efficient execution

– Complex semantics

– Complex syntax

– Concurrency is programmer designed

• Functional Languages:
– Simple semantics

– Simple syntax

– Less efficient execution

– Programs can automatically be made concurrent

Copyright © 2015 Pearson. All rights reserved. 1-71

Summary

• Functional programming languages use function application,
conditional expressions, recursion, and functional forms to
control program execution

• Lisp began as a purely functional language and later included
imperative features

• Scheme is a relatively simple dialect of Lisp that uses static
scoping exclusively

• Common Lisp is a large Lisp-based language
• ML is a static-scoped and strongly typed functional language

that uses type inference
• Haskell is a lazy functional language supporting infinite lists

and set comprehension.
• F# is a .NET functional language that also supports

imperative and object-oriented programming
• Some primarily imperative languages now incorporate some

support for functional programming
• Purely functional languages have advantages over imperative

alternatives, but still are not very widely used

	Slide 1: Chapter 15
	Slide 2: Chapter 15 Topics
	Slide 3: Introduction
	Slide 4: Mathematical Functions
	Slide 5: Lambda Expressions
	Slide 6: Functional Forms
	Slide 7: Function Composition
	Slide 8: Apply-to-all
	Slide 9: Fundamentals of Functional Programming Languages
	Slide 10: Lisp Data Types and Structures
	Slide 11: Lisp Interpretation
	Slide 12: Origins of Scheme
	Slide 13: The Scheme Interpreter
	Slide 14: Primitive Function Evaluation
	Slide 15: Primitive Functions & LAMBDA Expressions
	Slide 16: Special Form Function: DEFINE
	Slide 17: Output Functions
	Slide 18: Numeric Predicate Functions
	Slide 19: Control Flow
	Slide 20: List Functions
	Slide 21: List Functions (continued)
	Slide 22: List Functions (continued)
	Slide 23: Predicate Function: EQ?
	Slide 24: Predicate Function: EQV?
	Slide 25: Predicate Functions: LIST? and NULL?
	Slide 26: Example Scheme Function: member
	Slide 27: Example Scheme Function: equalsimp
	Slide 28: Example Scheme Function: equal
	Slide 29: Example Scheme Function: append
	Slide 30: Example Scheme Function: LET
	Slide 31: LET Example
	Slide 32: Tail Recursion in Scheme
	Slide 33: Tail Recursion in Scheme - continued
	Slide 34: Functional Form - Composition
	Slide 35: Functional Form – Apply-to-All
	Slide 36: Functions That Build Code
	Slide 37: Adding a List of Numbers
	Slide 38: Common Lisp
	Slide 39: Common Lisp (continued)
	Slide 40: Common Lisp (continued)
	Slide 41: Common Lisp (continued)
	Slide 42: Common Lisp (continued)
	Slide 43: ML
	Slide 44: ML Specifics
	Slide 45: ML Specifics (continued)
	Slide 46: ML Specifics (continued)
	Slide 47: ML Specifics (continued)
	Slide 48: ML Specifics (continued)
	Slide 49: ML Specifics (continued)
	Slide 50: ML Specifics (continued)
	Slide 51: ML Specifics (continued)
	Slide 52: ML Specifics (continued)
	Slide 53: Haskell
	Slide 54: Function Definitions with Different Parameter Ranges
	Slide 55: Haskell Lists
	Slide 56: Haskell (continued)
	Slide 57: Quicksort
	Slide 58: Lazy Evaluation
	Slide 59: Member Revisited
	Slide 60: F#
	Slide 61: F# (continued)
	Slide 62: F# (continued)
	Slide 63: F# (continued)
	Slide 64: F# (continued)
	Slide 65: F# (continued)
	Slide 66: F# (continued)
	Slide 67: Support for Functional Programming in Primarily Imperative Languages
	Slide 68: Support for Functional Programming in Primarily Imperative Languages (continued)
	Slide 69: Support for Functional Programming in Primarily Imperative Languages (continued)
	Slide 70: Comparing Functional and Imperative Languages
	Slide 71: Summary

