
ISBN 0-321-49362-1

Chapter 16

Logic Programming
Languages

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 16 Topics

• Introduction

• A Brief Introduction to Predicate Calculus

• Predicate Calculus and Proving Theorems

• An Overview of Logic Programming

• The Origins of Prolog

• The Basic Elements of Prolog

• Deficiencies of Prolog

• Applications of Logic Programming

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction

• Programs in logic languages are expressed
in a form of symbolic logic

• Use a logical inferencing process to
produce results

• Declarative rather that procedural:
– Only specification of results are stated (not

detailed procedures for producing them)

Copyright © 2015 Pearson. All rights reserved. 1-4

Proposition

• A logical statement that may or may not be
true

– Consists of objects and relationships of objects
to each other

Copyright © 2015 Pearson. All rights reserved. 1-5

Symbolic Logic

• Logic which can be used for the basic needs
of formal logic:

– Express propositions

– Express relationships between propositions

– Describe how new propositions can be inferred
from other propositions

• Particular form of symbolic logic used for
logic programming called predicate calculus

Copyright © 2015 Pearson. All rights reserved. 1-6

Object Representation

• Objects in propositions are represented by
simple terms: either constants or variables

• Constant: a symbol that represents an
object

• Variable: a symbol that can represent
different objects at different times

– Different from variables in imperative languages

Copyright © 2015 Pearson. All rights reserved. 1-7

Compound Terms

• Atomic propositions consist of compound
terms

• Compound term: one element of a
mathematical relation, written like a
mathematical function

– Mathematical function is a mapping

– Can be written as a table

Copyright © 2015 Pearson. All rights reserved. 1-8

Parts of a Compound Term

• Compound term composed of two parts

– Functor: function symbol that names the
relationship

– Ordered list of parameters (tuple)

• Examples:

 student(jon)

 like(seth, OSX)

 like(nick, windows)

 like(jim, linux)

Copyright © 2015 Pearson. All rights reserved. 1-9

Forms of a Proposition

• Propositions can be stated in two forms:

– Fact: proposition is assumed to be true

– Query: truth of proposition is to be determined

• Compound proposition:

– Have two or more atomic propositions

– Propositions are connected by operators

Copyright © 2015 Pearson. All rights reserved. 1-10

Logical Operators

Name Symbol Example Meaning

negation a not a

conjunction a b a and b

disjunction a b a or b

equivalence a b a is equivalent
to b

implication

a b

a b

a implies b

b implies a

Copyright © 2015 Pearson. All rights reserved. 1-11

Quantifiers

Name Example Meaning

universal X.P For all X, P is true

existential X.P There exists a value of X
such that P is true

Copyright © 2015 Pearson. All rights reserved. 1-12

Clausal Form

•Too many ways to state the same thing

•Use a standard form for propositions

•Clausal form:

– B1 B2 … Bn A1 A2 … Am

– means if all the As are true, then at least one B
is true

•Antecedent: right side

•Consequent: left side

Copyright © 2015 Pearson. All rights reserved. 1-13

Predicate Calculus and Proving
Theorems

• A use of propositions is to discover new
theorems that can be inferred from known
axioms and theorems

• Resolution: an inference principle that
allows inferred propositions to be
computed from given propositions

Copyright © 2015 Pearson. All rights reserved. 1-14

Resolution

• Unification: finding values for variables in
propositions that allows matching process
to succeed

• Instantiation: assigning temporary values to
variables to allow unification to succeed

• After instantiating a variable with a value,
if matching fails, may need to backtrack
and instantiate with a different value

Copyright © 2015 Pearson. All rights reserved. 1-15

Proof by Contradiction

• Hypotheses: a set of pertinent propositions

• Goal: negation of theorem stated as a
proposition

• Theorem is proved by finding an
inconsistency

Copyright © 2015 Pearson. All rights reserved. 1-16

Theorem Proving

• Basis for logic programming

• When propositions used for resolution, only
restricted form can be used

• Horn clause - can have only two forms

– Headed: single atomic proposition on left side

– Headless: empty left side (used to state facts)

• Most propositions can be stated as Horn
clauses

Copyright © 2015 Pearson. All rights reserved. 1-17

Overview of Logic Programming

• Declarative semantics

– There is a simple way to determine the meaning
of each statement

– Simpler than the semantics of imperative
languages

• Programming is nonprocedural

– Programs do not state now a result is to be
computed, but rather the form of the result

Copyright © 2015 Pearson. All rights reserved. 1-18

Example: Sorting a List

• Describe the characteristics of a sorted list,
not the process of rearranging a list

 sort(old_list, new_list) permute (old_list,

new_list) sorted (new_list)

 sorted (list) j such that 1 j < n, list(j) list
(j+1)

Copyright © 2015 Pearson. All rights reserved. 1-19

The Origins of Prolog

• University of Aix-Marseille (Calmerauer &
Roussel)

– Natural language processing

• University of Edinburgh (Kowalski)

– Automated theorem proving

Copyright © 2015 Pearson. All rights reserved. 1-20

Terms

• This book uses the Edinburgh syntax of
Prolog

• Term: a constant, variable, or structure

• Constant: an atom or an integer

• Atom: symbolic value of Prolog

• Atom consists of either:

– a string of letters, digits, and underscores
beginning with a lowercase letter

– a string of printable ASCII characters delimited
by apostrophes

Copyright © 2015 Pearson. All rights reserved. 1-21

Terms: Variables and Structures

• Variable: any string of letters, digits, and
underscores beginning with an uppercase
letter

• Instantiation: binding of a variable to a
value

– Lasts only as long as it takes to satisfy one
complete goal

• Structure: represents atomic proposition

functor(parameter list)

Copyright © 2015 Pearson. All rights reserved. 1-22

Fact Statements

• Used for the hypotheses

• Headless Horn clauses

 female(shelley).

 male(bill).

 father(bill, jake).

Copyright © 2015 Pearson. All rights reserved. 1-23

Rule Statements

• Used for the hypotheses

• Headed Horn clause

• Right side: antecedent (if part)

– May be single term or conjunction

• Left side: consequent (then part)

– Must be single term

• Conjunction: multiple terms separated by
logical AND operations (implied)

Copyright © 2015 Pearson. All rights reserved. 1-24

Example Rules

ancestor(mary,shelley):- mother(mary,shelley).

• Can use variables (universal objects) to
generalize meaning:

 parent(X,Y):- mother(X,Y).

 parent(X,Y):- father(X,Y).

 grandparent(X,Z):- parent(X,Y), parent(Y,Z).

Copyright © 2015 Pearson. All rights reserved. 1-25

Goal Statements

• For theorem proving, theorem is in form of
proposition that we want system to prove
or disprove – goal statement

• Same format as headless Horn

 man(fred)

• Conjunctive propositions and propositions
with variables also legal goals

 father(X, mike)

Copyright © 2015 Pearson. All rights reserved. 1-26

Inferencing Process of Prolog

• Queries are called goals

• If a goal is a compound proposition, each of the
facts is a subgoal

• To prove a goal is true, must find a chain of
inference rules and/or facts. For goal Q:

P2 :- P1

P3 :- P2

…

Q :- Pn

• Process of proving a subgoal called matching,
satisfying, or resolution

Copyright © 2015 Pearson. All rights reserved. 1-27

Approaches

• Matching is the process of proving a proposition

• Proving a subgoal is called satisfying the subgoal

• Bottom-up resolution, forward chaining
– Begin with facts and rules of database and attempt to find

sequence that leads to goal

– Works well with a large set of possibly correct answers

• Top-down resolution, backward chaining
– Begin with goal and attempt to find sequence that leads

to set of facts in database

– Works well with a small set of possibly correct answers

• Prolog implementations use backward chaining

Copyright © 2015 Pearson. All rights reserved. 1-28

Subgoal Strategies

• When goal has more than one subgoal, can
use either

– Depth-first search: find a complete proof for
the first subgoal before working on others

– Breadth-first search: work on all subgoals in
parallel

• Prolog uses depth-first search

– Can be done with fewer computer resources

Copyright © 2015 Pearson. All rights reserved. 1-29

Backtracking

• With a goal with multiple subgoals, if fail to
show truth of one of subgoals, reconsider
previous subgoal to find an alternative
solution: backtracking

• Begin search where previous search left off

• Can take lots of time and space because
may find all possible proofs to every
subgoal

Copyright © 2015 Pearson. All rights reserved. 1-30

Simple Arithmetic

• Prolog supports integer variables and
integer arithmetic

• is operator: takes an arithmetic expression
as right operand and variable as left
operand

 A is B / 17 + C

• Not the same as an assignment statement!

– The following is illegal:

 Sum is Sum + Number.

Copyright © 2015 Pearson. All rights reserved. 1-31

Example

speed(ford,100).

speed(chevy,105).

speed(dodge,95).

speed(volvo,80).

time(ford,20).

time(chevy,21).

time(dodge,24).

time(volvo,24).

distance(X,Y) :- speed(X,Speed),

 time(X,Time),

 Y is Speed * Time.

A query: distance(chevy, Chevy_Distance).

Copyright © 2015 Pearson. All rights reserved. 1-32

Trace

• Built-in structure that displays
instantiations at each step

• Tracing model of execution - four events:

– Call (beginning of attempt to satisfy goal)

– Exit (when a goal has been satisfied)

– Redo (when backtrack occurs)

– Fail (when goal fails)

Copyright © 2015 Pearson. All rights reserved. 1-33

Example

likes(jake,chocolate).

likes(jake, apricots).

likes(darcie, licorice).

likes(darcie, apricots).

trace.

likes(jake, X), likes(darcie, X).

(1) 1 Call: likes(jake, _0)?

(1) 1 Exit: likes(jake, chocolate)

(2) 1 Call: likes(darcie, chocolate)?

(2) 1 Fail: likes(darcie, chocolate)

(1) 1 Redo: likes(jake, _0)?

(1) 1 Exit: likes(jake, apricots)

(3) 1 Call: likes(darcie, apricots)?

(3) 1 Exit: likes(darcie, apricots)

X = apricots

Copyright © 2015 Pearson. All rights reserved. 1-34

List Structures

• Other basic data structure (besides atomic
propositions we have already seen): list

• List is a sequence of any number of elements

• Elements can be atoms, atomic propositions,
or other terms (including other lists)

 [apple, prune, grape, kumquat]

 [] (empty list)

 [X | Y] (head X and tail Y)

Copyright © 2015 Pearson. All rights reserved. 1-35

Append Example

append([], List, List).

 append([Head | List_1], List_2, [Head | List_3]) :-

 append (List_1, List_2, List_3).

Copyright © 2015 Pearson. All rights reserved. 1-36

More Examples

reverse([], []).

reverse([Head | Tail], List) :-

 reverse (Tail, Result),

 append (Result, [Head], List).

member(Element, [Element | _]).

member(Element, [_ | List]) :-

 member(Element, List).

 The underscore character means an anonymous variable—it
means we do not care what instantiation it might get from
unification

Copyright © 2015 Pearson. All rights reserved. 1-37

Deficiencies of Prolog

• Resolution order control

– In a pure logic programming environment, the order
of attempted matches is nondeterministic and all
matches would be attempted concurrently

• The closed-world assumption

– The only knowledge is what is in the database

• The negation problem

– Anything not stated in the database is assumed to
be false

• Intrinsic limitations

– It is easy to state a sort process in logic, but difficult
to actually do—it doesn’t know how to sort

Copyright © 2015 Pearson. All rights reserved. 1-38

Applications of Logic Programming

• Relational database management systems

• Expert systems

• Natural language processing

Copyright © 2015 Pearson. All rights reserved. 1-39

Summary

• Symbolic logic provides basis for logic
programming

• Logic programs should be nonprocedural

• Prolog statements are facts, rules, or goals

• Resolution is the primary activity of a
Prolog interpreter

• Although there are a number of drawbacks
with the current state of logic programming
it has been used in a number of areas

	Slide 1: Chapter 16
	Slide 2: Chapter 16 Topics
	Slide 3: Introduction
	Slide 4: Proposition
	Slide 5: Symbolic Logic
	Slide 6: Object Representation
	Slide 7: Compound Terms
	Slide 8: Parts of a Compound Term
	Slide 9: Forms of a Proposition
	Slide 10: Logical Operators
	Slide 11: Quantifiers
	Slide 12: Clausal Form
	Slide 13: Predicate Calculus and Proving Theorems
	Slide 14: Resolution
	Slide 15: Proof by Contradiction
	Slide 16: Theorem Proving
	Slide 17: Overview of Logic Programming
	Slide 18: Example: Sorting a List
	Slide 19: The Origins of Prolog
	Slide 20: Terms
	Slide 21: Terms: Variables and Structures
	Slide 22: Fact Statements
	Slide 23: Rule Statements
	Slide 24: Example Rules
	Slide 25: Goal Statements
	Slide 26: Inferencing Process of Prolog
	Slide 27: Approaches
	Slide 28: Subgoal Strategies
	Slide 29: Backtracking
	Slide 30: Simple Arithmetic
	Slide 31: Example
	Slide 32: Trace
	Slide 33: Example
	Slide 34: List Structures
	Slide 35: Append Example
	Slide 36: More Examples
	Slide 37: Deficiencies of Prolog
	Slide 38: Applications of Logic Programming
	Slide 39: Summary

