
ISBN 0-321-49362-1

Chapter 2

Evolution of the
Major Programming
Languages

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 2 Topics

• Zuse’s Plankalkül

• Minimal Hardware Programming:
Pseudocodes

• The IBM 704 and Fortran

• Functional Programming: Lisp

• The First Step Toward Sophistication:
ALGOL 60

• Computerizing Business Records: COBOL

• The Beginnings of Timesharing: Basic

Copyright © 2015 Pearson. All rights reserved. 1-3

Chapter 2 Topics (continued)

• Everything for Everybody: PL/I

• Two Early Dynamic Languages: APL and
SNOBOL

• The Beginnings of Data Abstraction:
SIMULA 67

• Orthogonal Design: ALGOL 68

• Some Early Descendants of the ALGOLs

• Programming Based on Logic: Prolog

• History's Largest Design Effort: Ada

Copyright © 2015 Pearson. All rights reserved. 1-4

Chapter 2 Topics (continued)

• Object-Oriented Programming: Smalltalk

• Combining Imperative ad Object-Oriented
Features: C++

• An Imperative-Based Object-Oriented
Language: Java

• Scripting Languages

• The Flagship .NET Language: C#

• Markup/Programming Hybrid Languages

Copyright © 2015 Pearson. All rights reserved. 1-5

Genealogy of Common Languages

Copyright © 2015 Pearson. All rights reserved. 1-6

Zuse’s Plankalkül

• Designed in 1945, but not published until
1972

• Never implemented

• Advanced data structures

– floating point, arrays, records

• Invariants

Copyright © 2015 Pearson. All rights reserved. 1-7

Plankalkül Syntax

• An assignment statement to assign the
expression A[4] + 1 to A[5]

 | A + 1 => A

 V | 4 5 (subscripts)

 S | 1.n 1.n (data types)

Copyright © 2015 Pearson. All rights reserved. 1-8

Minimal Hardware Programming:
Pseudocodes

• What was wrong with using machine code?

– Poor readability

– Poor modifiability

– Expression coding was tedious

– Machine deficiencies--no indexing or floating
point

Copyright © 2015 Pearson. All rights reserved. 1-9

Pseudocodes: Short Code

• Short Code developed by Mauchly in 1949
for BINAC computers

– Expressions were coded, left to right

– Example of operations:

 01 – 06 abs value 1n (n+2)nd power
 02) 07 + 2n (n+2)nd root

 03 = 08 pause 4n if <= n

 04 / 09 (58 print and tab

Copyright © 2015 Pearson. All rights reserved. 1-10

Pseudocodes: Speedcoding

• Speedcoding developed by Backus in 1954
for IBM 701

– Pseudo ops for arithmetic and math functions

– Conditional and unconditional branching

– Auto-increment registers for array access

– Slow!

– Only 700 words left for user program

Copyright © 2015 Pearson. All rights reserved. 1-11

Pseudocodes: Related Systems

• The UNIVAC Compiling System

– Developed by a team led by Grace Hopper

– Pseudocode expanded into machine code

• David J. Wheeler (Cambridge University)

– developed a method of using blocks of re-
locatable addresses to solve the problem of
absolute addressing

Copyright © 2015 Pearson. All rights reserved. 1-12

IBM 704 and Fortran

• Fortran 0: 1954 - not implemented
• Fortran I:1957

– Designed for the new IBM 704, which had index registers
and floating point hardware

 - This led to the idea of compiled programming
languages, because there was no place to hide the cost of
interpretation (no floating-point software)

– Environment of development

• Computers were small and unreliable

• Applications were scientific

• No programming methodology or tools

• Machine efficiency was the most important concern

Copyright © 2015 Pearson. All rights reserved. 1-13

Design Process of Fortran

• Impact of environment on design of Fortran I

– No need for dynamic storage

– Need good array handling and counting loops

– No string handling, decimal arithmetic, or
powerful input/output (for business software)

Copyright © 2015 Pearson. All rights reserved. 1-14

Fortran I Overview

• First implemented version of Fortran

– Names could have up to six characters

– Post-test counting loop (DO)

– Formatted I/O

– User-defined subprograms

– Three-way selection statement (arithmetic IF)

– No data typing statements

Copyright © 2015 Pearson. All rights reserved. 1-15

Fortran I Overview (continued)

• First implemented version of FORTRAN

– No separate compilation

– Compiler released in April 1957, after 18
worker-years of effort

– Programs larger than 400 lines rarely compiled
correctly, mainly due to poor reliability of 704

– Code was very fast

– Quickly became widely used

Copyright © 2015 Pearson. All rights reserved. 1-16

Fortran II

• Distributed in 1958

– Independent compilation

– Fixed the bugs

Copyright © 2015 Pearson. All rights reserved. 1-17

Fortran IV

• Evolved during 1960-62

– Explicit type declarations

– Logical selection statement

– Subprogram names could be parameters

– ANSI standard in 1966

Copyright © 2015 Pearson. All rights reserved. 1-18

Fortran 77

• Became the new standard in 1978

– Character string handling

– Logical loop control statement

– IF-THEN-ELSE statement

Copyright © 2015 Pearson. All rights reserved. 1-19

Fortran 90

• Most significant changes from Fortran 77

– Modules

– Dynamic arrays

– Pointers

– Recursion

– CASE statement

– Parameter type checking

Copyright © 2015 Pearson. All rights reserved. 1-20

Latest versions of Fortran

• Fortran 95 – relatively minor additions, plus
some deletions

• Fortran 2003 – support for OOP, procedure
pointers, interoperability with C

• Fortran 2008 – blocks for local scopes, co-
arrays, Do Concurrent

Copyright © 2015 Pearson. All rights reserved. 1-21

Fortran Evaluation

• Highly optimizing compilers (all versions
before 90)

– Types and storage of all variables are fixed
before run time

• Dramatically changed forever the way
computers are used

Copyright © 2015 Pearson. All rights reserved. 1-22

Functional Programming: Lisp

• LISt Processing language

– Designed at MIT by McCarthy

• AI research needed a language to

– Process data in lists (rather than arrays)

– Symbolic computation (rather than numeric)

• Only two data types: atoms and lists

• Syntax is based on lambda calculus

Copyright © 2015 Pearson. All rights reserved. 1-23

Representation of Two Lisp Lists

Representing the lists (A B C D)

and (A (B C) D (E (F G)))

Copyright © 2015 Pearson. All rights reserved. 1-24

Lisp Evaluation

• Pioneered functional programming

– No need for variables or assignment

– Control via recursion and conditional
expressions

• Still the dominant language for AI

• Common Lisp and Scheme are
contemporary dialects of Lisp

• ML, Haskell, and F# are also functional
programming languages, but use very
different syntax

Copyright © 2015 Pearson. All rights reserved. 1-25

Scheme

• Developed at MIT in mid 1970s

• Small

• Extensive use of static scoping

• Functions as first-class entities

• Simple syntax (and small size) make it ideal
for educational applications

Copyright © 2015 Pearson. All rights reserved. 1-26

Common Lisp

• An effort to combine features of several
dialects of Lisp into a single language

• Large, complex, used in industry for some
large applications

Copyright © 2015 Pearson. All rights reserved. 1-27

The First Step Toward Sophistication:
ALGOL 60

• Environment of development

– FORTRAN had (barely) arrived for IBM 70x

– Many other languages were being developed, all
for specific machines

– No portable language; all were machine-
dependent

– No universal language for communicating
algorithms

• ALGOL 60 was the result of efforts to
design a universal language

Copyright © 2015 Pearson. All rights reserved. 1-28

Early Design Process

• ACM and GAMM met for four days for
design (May 27 to June 1, 1958)

• Goals of the language

– Close to mathematical notation

– Good for describing algorithms

– Must be translatable to machine code

Copyright © 2015 Pearson. All rights reserved. 1-29

ALGOL 58

• Concept of type was formalized

• Names could be any length

• Arrays could have any number of subscripts

• Parameters were separated by mode (in & out)

• Subscripts were placed in brackets

• Compound statements (begin ... end)

• Semicolon as a statement separator

• Assignment operator was :=

• if had an else-if clause

• No I/O - “would make it machine dependent”

Copyright © 2015 Pearson. All rights reserved. 1-30

ALGOL 58 Implementation

• Not meant to be implemented, but
variations of it were (MAD, JOVIAL)

• Although IBM was initially enthusiastic, all
support was dropped by mid 1959

Copyright © 2015 Pearson. All rights reserved. 1-31

ALGOL 60 Overview

• Modified ALGOL 58 at 6-day meeting in
Paris

• New features

– Block structure (local scope)

– Two parameter passing methods

– Subprogram recursion

– Stack-dynamic arrays

– Still no I/O and no string handling

Copyright © 2015 Pearson. All rights reserved. 1-32

ALGOL 60 Evaluation

• Successes

– It was the standard way to publish algorithms
for over 20 years

– All subsequent imperative languages are based
on it

– First machine-independent language

– First language whose syntax was formally
defined (BNF)

Copyright © 2015 Pearson. All rights reserved. 1-33

ALGOL 60 Evaluation (continued)

• Failure

– Never widely used, especially in U.S.

– Reasons

• Lack of I/O and the character set made programs
non-portable

• Too flexible--hard to implement

• Entrenchment of Fortran

• Formal syntax description

• Lack of support from IBM

Copyright © 2015 Pearson. All rights reserved. 1-34

Computerizing Business Records: COBOL

• Environment of development

– UNIVAC was beginning to use FLOW-MATIC

– USAF was beginning to use AIMACO

– IBM was developing COMTRAN

Copyright © 2015 Pearson. All rights reserved. 1-35

COBOL Historical Background

• Based on FLOW-MATIC

• FLOW-MATIC features

– Names up to 12 characters, with embedded
hyphens

– English names for arithmetic operators (no
arithmetic expressions)

– Data and code were completely separate

– The first word in every statement was a verb

Copyright © 2015 Pearson. All rights reserved. 1-36

COBOL Design Process

• First Design Meeting (Pentagon) - May 1959

• Design goals

– Must look like simple English

– Must be easy to use, even if that means it will be less
powerful

– Must broaden the base of computer users

– Must not be biased by current compiler problems

• Design committee members were all from
computer manufacturers and DoD branches

• Design Problems: arithmetic expressions?
subscripts? Fights among manufacturers

Copyright © 2015 Pearson. All rights reserved. 1-37

COBOL Evaluation

• Contributions

– First macro facility in a high-level language

– Hierarchical data structures (records)

– Nested selection statements

– Long names (up to 30 characters), with hyphens

– Separate data division

Copyright © 2015 Pearson. All rights reserved. 1-38

COBOL: DoD Influence

• First language required by DoD

– would have failed without DoD

• Still the most widely used business
applications language

Copyright © 2015 Pearson. All rights reserved. 1-39

The Beginning of Timesharing: Basic

• Designed by Kemeny & Kurtz at Dartmouth

• Design Goals:

– Easy to learn and use for non-science students

– Must be “pleasant and friendly”

– Fast turnaround for homework

– Free and private access

– User time is more important than computer time

• Current popular dialect: Visual Basic

• First widely used language with time
sharing

Copyright © 2015 Pearson. All rights reserved. 1-40

2.8 Everything for Everybody: PL/I

• Designed by IBM and SHARE

• Computing situation in 1964 (IBM's point
of view)

– Scientific computing

• IBM 1620 and 7090 computers

• FORTRAN

• SHARE user group

– Business computing

• IBM 1401, 7080 computers

• COBOL

• GUIDE user group

Copyright © 2015 Pearson. All rights reserved. 1-41

PL/I: Background

• By 1963
– Scientific users began to need more elaborate

I/O, like COBOL had; business users began to
need floating point and arrays for MIS

– It looked like many shops would begin to need
two kinds of computers, languages, and support
staff--too costly

• The obvious solution
– Build a new computer to do both kinds of

applications

– Design a new language to do both kinds of
applications

Copyright © 2015 Pearson. All rights reserved. 1-42

PL/I: Design Process

• Designed in five months by the 3 X 3
Committee

– Three members from IBM, three members from
SHARE

• Initial concept

– An extension of Fortran IV

• Initially called NPL (New Programming
Language)

• Name changed to PL/I in 1965

Copyright © 2015 Pearson. All rights reserved. 1-43

PL/I: Evaluation

• PL/I contributions

– First unit-level concurrency

– First exception handling

– Switch-selectable recursion

– First pointer data type

– First array cross sections

• Concerns

– Many new features were poorly designed

– Too large and too complex

Copyright © 2015 Pearson. All rights reserved. 1-44

Two Early Dynamic Languages: APL and
SNOBOL

• Characterized by dynamic typing and
dynamic storage allocation

• Variables are untyped

– A variable acquires a type when it is assigned a
value

• Storage is allocated to a variable when it is
assigned a value

Copyright © 2015 Pearson. All rights reserved. 1-45

APL: A Programming Language

• Designed as a hardware description
language at IBM by Ken Iverson around
1960

– Highly expressive (many operators, for both
scalars and arrays of various dimensions)

– Programs are very difficult to read

• Still in use; minimal changes

Copyright © 2015 Pearson. All rights reserved. 1-46

SNOBOL

• Designed as a string manipulation language
at Bell Labs by Farber, Griswold, and
Polensky in 1964

• Powerful operators for string pattern
matching

• Slower than alternative languages (and thus
no longer used for writing editors)

• Still used for certain text processing tasks

Copyright © 2015 Pearson. All rights reserved. 1-47

The Beginning of Data Abstraction:
SIMULA 67

• Designed primarily for system
simulation in Norway by Nygaard and
Dahl

• Based on ALGOL 60 and SIMULA I

• Primary Contributions

– Coroutines - a kind of subprogram

– Classes, objects, and inheritance

Copyright © 2015 Pearson. All rights reserved. 1-48

Orthogonal Design: ALGOL 68

• From the continued development of ALGOL
60 but not a superset of that language

• Source of several new ideas (even though
the language itself never achieved
widespread use)

• Design is based on the concept of
orthogonality

– A few basic concepts, plus a few combining
mechanisms

Copyright © 2015 Pearson. All rights reserved. 1-49

ALGOL 68 Evaluation

• Contributions

– User-defined data structures

– Reference types

– Dynamic arrays (called flex arrays)

• Comments

– Less usage than ALGOL 60

– Had strong influence on subsequent languages,
especially Pascal, C, and Ada

Copyright © 2015 Pearson. All rights reserved. 1-50

Pascal - 1971

• Developed by Wirth (a former member of
the ALGOL 68 committee)

• Designed for teaching structured
programming

• Small, simple, nothing really new

• Largest impact was on teaching
programming

– From mid-1970s until the late 1990s, it was the
most widely used language for teaching
programming

Copyright © 2015 Pearson. All rights reserved. 1-51

C - 1972

• Designed for systems programming (at Bell
Labs by Dennis Richie)

• Evolved primarily from BCLP and B, but also
ALGOL 68

• Powerful set of operators, but poor type
checking

• Initially spread through UNIX

• Though designed as a systems language, it
has been used in many application areas

Copyright © 2015 Pearson. All rights reserved. 1-52

Programming Based on Logic: Prolog

• Developed, by Comerauer and Roussel
(University of Aix-Marseille), with help from
Kowalski (University of Edinburgh)

• Based on formal logic

• Non-procedural

• Can be summarized as being an intelligent
database system that uses an inferencing
process to infer the truth of given queries

• Comparatively inefficient

• Few application areas

Copyright © 2015 Pearson. All rights reserved. 1-53

History’s Largest Design Effort: Ada

• Huge design effort, involving hundreds of
people, much money, and about eight
years

• Sequence of requirements (1975-1978)

– (Strawman, Woodman, Tinman, Ironman,
Steelman)

• Named Ada after Augusta Ada Byron, the
first programmer

Copyright © 2015 Pearson. All rights reserved. 1-54

Ada Evaluation

• Contributions

– Packages - support for data abstraction

– Exception handling - elaborate

– Generic program units

– Concurrency - through the tasking model

• Comments

– Competitive design

– Included all that was then known about software
engineering and language design

– First compilers were very difficult; the first really usable
compiler came nearly five years after the language design
was completed

Copyright © 2015 Pearson. All rights reserved. 1-55

Ada 95

• Ada 95 (began in 1988)

– Support for OOP through type derivation

– Better control mechanisms for shared data

– New concurrency features

– More flexible libraries

• Ada 2005

– Interfaces and synchronizing interfaces

• Popularity suffered because the DoD no
longer requires its use but also because of
popularity of C++

Copyright © 2015 Pearson. All rights reserved. 1-56

Object-Oriented Programming:
Smalltalk

• Developed at Xerox PARC, initially by Alan
Kay, later by Adele Goldberg

• First full implementation of an object-
oriented language (data abstraction,
inheritance, and dynamic binding)

• Pioneered the graphical user interface
design

• Promoted OOP

Copyright © 2015 Pearson. All rights reserved. 1-57

Combining Imperative and Object-
Oriented Programming: C++

• Developed at Bell Labs by Stroustrup in 1980

• Evolved from C and SIMULA 67

• Facilities for object-oriented programming, taken
partially from SIMULA 67

• A large and complex language, in part because it
supports both procedural and OO programming

• Rapidly grew in popularity, along with OOP

• ANSI standard approved in November 1997

• Microsoft’s version: MC++
– Properties, delegates, interfaces, no multiple inheritance

Copyright © 2015 Pearson. All rights reserved. 1-58

A Related OOP Language

• Objective-C (designed by Brad Cox – early
1980s)

– C plus support for OOP based on Smalltalk

– Uses Smalltalk’s method calling syntax

– Used by Apple for systems programs

Copyright © 2015 Pearson. All rights reserved. 1-59

An Imperative-Based Object-Oriented
Language: Java

• Developed at Sun in the early 1990s
– C and C++ were not satisfactory for embedded

electronic devices

• Based on C++
– Significantly simplified (does not include
struct, union, enum, pointer arithmetic, and
half of the assignment coercions of C++)

– Supports only OOP

– Has references, but not pointers

– Includes support for applets and a form of
concurrency

Copyright © 2015 Pearson. All rights reserved. 1-60

Java Evaluation

• Eliminated many unsafe features of C++

• Supports concurrency

• Libraries for applets, GUIs, database access

• Portable: Java Virtual Machine concept, JIT
compilers

• Widely used for Web programming

• Use increased faster than any previous
language

• Most recent version, 8, released in 2014

Copyright © 2015 Pearson. All rights reserved. 1-61

Scripting Languages for the Web

• Perl
– Designed by Larry Wall—first released in 1987
– Variables are statically typed but implicitly declared

– Three distinctive namespaces, denoted by the first character of a
 variable’s name

– Powerful, but somewhat dangerous

– Gained widespread use for CGI programming on the Web
– Also used for a replacement for UNIX system administration language

• JavaScript
– Began at Netscape, but later became a joint venture of Netscape and Sun

Microsystems

– A client-side HTML-embedded scripting language, often used to create
dynamic HTML documents

– Purely interpreted
– Related to Java only through similar syntax

• PHP
– PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf
– A server-side HTML-embedded scripting language, often used for form

processing and database access through the Web
– Purely interpreted

Scripting Languages for the Web

• Python
– An OO interpreted scripting language
– Type checked but dynamically typed

– Used for CGI programming and form processing
– Dynamically typed, but type checked

– Supports lists, tuples, and hashes

• Ruby

– Designed in Japan by Yukihiro Matsumoto (a.k.a, “Matz”)

– Began as a replacement for Perl and Python

– A pure object-oriented scripting language

 - All data are objects

– Most operators are implemented as methods, which can be redefined by
user code

– Purely interpreted

Copyright © 2015 Pearson. All rights reserved. 1-62

Copyright © 2015 Pearson. All rights reserved. 1-63

Scripting Languages for the Web

• Lua

– An OO interpreted scripting language

– Type checked but dynamically typed
– Used for CGI programming and form processing

– Dynamically typed, but type checked
– Supports lists, tuples, and hashes, all with its single data structure,

 the table

– Easily extendable

Copyright © 2015 Pearson. All rights reserved. 1-64

The Flagship .NET Language: C#

• Part of the .NET development platform
(2000)

• Based on C++ , Java, and Delphi

• Includes pointers, delegates, properties,
enumeration types, a limited kind of
dynamic typing, and anonymous types

• Is evolving rapidly

Copyright © 2015 Pearson. All rights reserved. 1-65

Markup/Programming Hybrid
Languages

• XSLT
– eXtensible Markup Language (XML): a metamarkup

language
– eXtensible Stylesheet Language Transformation (XSTL)

transforms XML documents for display
– Programming constructs (e.g., looping)

• JSP
– Java Server Pages: a collection of technologies to support

dynamic Web documents
– JSTL, a JSP library, includes programming constructs in the

form of HTML elements

Copyright © 2015 Pearson. All rights reserved. 1-66

Summary

• Development, development environment,
and evaluation of a number of important
programming languages

• Perspective into current issues in language
design

	Slide 1: Chapter 2
	Slide 2: Chapter 2 Topics
	Slide 3: Chapter 2 Topics (continued)
	Slide 4: Chapter 2 Topics (continued)
	Slide 5: Genealogy of Common Languages
	Slide 6: Zuse’s Plankalkül
	Slide 7: Plankalkül Syntax
	Slide 8: Minimal Hardware Programming: Pseudocodes
	Slide 9: Pseudocodes: Short Code
	Slide 10: Pseudocodes: Speedcoding
	Slide 11: Pseudocodes: Related Systems
	Slide 12: IBM 704 and Fortran
	Slide 13: Design Process of Fortran
	Slide 14: Fortran I Overview
	Slide 15: Fortran I Overview (continued)
	Slide 16: Fortran II
	Slide 17: Fortran IV
	Slide 18: Fortran 77
	Slide 19: Fortran 90
	Slide 20: Latest versions of Fortran
	Slide 21: Fortran Evaluation
	Slide 22: Functional Programming: Lisp
	Slide 23: Representation of Two Lisp Lists
	Slide 24: Lisp Evaluation
	Slide 25: Scheme
	Slide 26: Common Lisp
	Slide 27: The First Step Toward Sophistication: ALGOL 60
	Slide 28: Early Design Process
	Slide 29: ALGOL 58
	Slide 30: ALGOL 58 Implementation
	Slide 31: ALGOL 60 Overview
	Slide 32: ALGOL 60 Evaluation
	Slide 33: ALGOL 60 Evaluation (continued)
	Slide 34: Computerizing Business Records: COBOL
	Slide 35: COBOL Historical Background
	Slide 36: COBOL Design Process
	Slide 37: COBOL Evaluation
	Slide 38: COBOL: DoD Influence
	Slide 39: The Beginning of Timesharing: Basic
	Slide 40: 2.8 Everything for Everybody: PL/I
	Slide 41: PL/I: Background
	Slide 42: PL/I: Design Process
	Slide 43: PL/I: Evaluation
	Slide 44: Two Early Dynamic Languages: APL and SNOBOL
	Slide 45: APL: A Programming Language
	Slide 46: SNOBOL
	Slide 47: The Beginning of Data Abstraction: SIMULA 67
	Slide 48: Orthogonal Design: ALGOL 68
	Slide 49: ALGOL 68 Evaluation
	Slide 50: Pascal - 1971
	Slide 51: C - 1972
	Slide 52: Programming Based on Logic: Prolog
	Slide 53: History’s Largest Design Effort: Ada
	Slide 54: Ada Evaluation
	Slide 55: Ada 95
	Slide 56: Object-Oriented Programming: Smalltalk
	Slide 57: Combining Imperative and Object-Oriented Programming: C++
	Slide 58: A Related OOP Language
	Slide 59: An Imperative-Based Object-Oriented Language: Java
	Slide 60: Java Evaluation
	Slide 61: Scripting Languages for the Web
	Slide 62: Scripting Languages for the Web
	Slide 63: Scripting Languages for the Web
	Slide 64: The Flagship .NET Language: C#
	Slide 65: Markup/Programming Hybrid Languages
	Slide 66: Summary

