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Introduction

• A data type defines a collection of data 
objects and a set of predefined operations 
on those objects

• A descriptor is the collection of the 
attributes of a variable

• An object represents an instance of a 
user-defined (abstract data) type

• One design issue for all data types: What 
operations are defined and how are they 
specified?
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Primitive Data Types

• Almost all programming languages provide 
a set of primitive data types

• Primitive data types: Those not defined in 
terms of other data types

• Some primitive data types are merely 
reflections of the hardware

• Others require only a little non-hardware 
support for their implementation
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Primitive Data Types: Integer

• Almost always an exact reflection of the 
hardware so the mapping is trivial

• There may be as many as eight different 
integer types in a language 

• Java’s signed integer sizes: byte, short, 

int, long
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Primitive Data Types: Floating Point

• Model real numbers, but only as 
approximations

• Languages for scientific use support at 
least two floating-point types (e.g., float 
and double; sometimes more

• Usually exactly like the hardware, but not 
always

• IEEE Floating-Point

 Standard 754
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Primitive Data Types: Complex

• Some languages support a complex type, 
e.g., C99, Fortran, and Python

• Each value consists of two floats, the real 
part and the imaginary part

• Literal form (in Python):

(7 + 3j), where 7 is the real part and 3 is 
the imaginary part
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Primitive Data Types: Decimal

• For business applications (money)

– Essential to COBOL

– C# offers a decimal data type

• Store a fixed number of decimal digits, in 
coded form (BCD)

• Advantage: accuracy

• Disadvantages: limited range, wastes 
memory
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Primitive Data Types: Boolean

• Simplest of all

• Range of values: two elements, one for 
“true” and one for “false”

• Could be implemented as bits, but often as 
bytes

– Advantage: readability
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Primitive Data Types: Character

• Stored as numeric codings

• Most commonly used coding: ASCII

• An alternative, 16-bit coding: Unicode 
(UCS-2)

– Includes characters from most natural 
languages

– Originally used in Java

– C# and JavaScript also support Unicode

• 32-bit Unicode (UCS-4)

– Supported by Fortran, starting with 2003
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Character String Types 

• Values are sequences of characters

• Design issues:

– Is it a primitive type or just a special kind of 
array?

– Should the length of strings be static or 
dynamic?
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Character String Types Operations

• Typical operations:

– Assignment and copying

– Comparison (=, >, etc.)  

– Catenation

– Substring reference

– Pattern matching
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Character String Type in Certain 
Languages

• C and C++
– Not primitive

– Use char arrays and a library of functions that provide 
operations

• SNOBOL4 (a string manipulation language)
– Primitive

– Many operations, including elaborate pattern matching

• Fortran and Python
– Primitive type with assignment and several operations

• Java
– Primitive via the String class

• Perl, JavaScript, Ruby, and PHP 

     - Provide built-in pattern matching, using regular

         expressions
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Character String Length Options

• Static: COBOL, Java’s String class

• Limited Dynamic Length: C and C++

– In these languages, a special character is used 
to indicate the end of a string’s characters, 
rather than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl, 
JavaScript
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Character String Type Evaluation

• Aid to writability

• As a primitive type with static length, they 
are inexpensive to provide--why not have 
them?

• Dynamic length is nice, but is it worth the 
expense?
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Character String Implementation

• Static length: compile-time descriptor

• Limited dynamic length: may need a run-
time descriptor for length (but not in C and 
C++)

• Dynamic length: need run-time descriptor; 
allocation/deallocation is the biggest 
implementation problem
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Compile- and Run-Time Descriptors

Compile-time 
descriptor for 
static strings

Run-time 
descriptor for 
limited dynamic 
strings
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User-Defined Ordinal Types

• An ordinal type is one in which the range of 
possible values can be easily associated 
with the set of positive integers

• Examples of primitive ordinal types in Java

– integer

– char

– boolean
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Enumeration Types

• All possible values, which are named 
constants, are provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in 

more than one type definition, and if so, how is 
the type of an occurrence of that constant 
checked?

– Are enumeration values coerced to integer?

– Any other type coerced to an enumeration type?
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Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a 
color as a number

• Aid to reliability, e.g., compiler can check: 

– operations (don’t allow colors to be added) 

– No enumeration variable can be assigned a 
value outside its defined range

– C# and Java 5.0 provide better support for 
enumeration than C++ because enumeration 
type variables in these languages are not 
coerced into integer types
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Array Types

• An array is a homogeneous aggregate of 
data elements in which an individual 
element is identified by its position in the 
aggregate, relative to the first element.
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Array Design Issues

• What types are legal for subscripts?

• Are subscripting expressions in element 
references range checked?

• When are subscript ranges bound?

• When does allocation take place?

• Are ragged or rectangular multidimensional 
arrays allowed, or both?

• What is the maximum number of subscripts?

• Can array objects be initialized?

• Are any kind of slices supported?
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Array Indexing

• Indexing (or subscripting) is a mapping 
from indices to elements

 array_name (index_value_list) → an element

• Index Syntax

– Fortran and Ada use parentheses

• Ada explicitly uses parentheses to show uniformity 
between array references and function calls because 
both are mappings

– Most other languages use brackets
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Arrays Index (Subscript) Types

• FORTRAN, C: integer only

• Java: integer types only

• Index range checking

    - C, C++, Perl, and Fortran do not specify

        range checking

    - Java, ML, C# specify range checking
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Subscript Binding and Array Categories

• Static: subscript ranges are statically bound 
and storage allocation is static (before run-
time)

– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are 
statically bound, but the allocation is done 
at declaration time

– Advantage: space efficiency 
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Subscript Binding and Array Categories 
(continued)

• Fixed heap-dynamic: similar to fixed stack-
dynamic: storage binding is dynamic but 
fixed after allocation (i.e., binding is done 
when requested and storage is allocated 
from heap, not stack)
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Subscript Binding and Array Categories 
(continued)

• Heap-dynamic: binding of subscript ranges 
and storage allocation is dynamic and can 
change any number of times

– Advantage: flexibility (arrays can grow or shrink 
during program execution)
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Subscript Binding and Array Categories 
(continued)

• C and C++ arrays that include static modifier 
are static

• C and C++ arrays without static modifier are 
fixed stack-dynamic

• C and C++ provide fixed heap-dynamic 
arrays

• C# includes a second array class ArrayList 
that provides fixed heap-dynamic

• Perl, JavaScript, Python, and Ruby support 
heap-dynamic arrays
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Array Initialization

• Some language allow initialization at the 
time of storage allocation

– C, C++, Java, C# example

int list [] = {4, 5, 7, 83} 

– Character strings in C and C++

char name [] = ″freddie″;

– Arrays of strings in C and C++

char *names [] = {″Bob″, ″Jake″, ″Joe″];

– Java initialization of String objects

String[] names = {″Bob″, ″Jake″, ″Joe″};
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Heterogeneous Arrays

• A heterogeneous array is one in which the 
elements need not be of the same type

• Supported by Perl, Python, JavaScript, and 
Ruby



Array Initialization

• C-based languages
– int list [] = {1, 3, 5, 7}

– char *names [] = {″Mike″, ″Fred″, ″Mary Lou″};

• Python

– List comprehensions

 list = [x ** 2 for x in range(12) if x % 3 == 0]

    puts [0, 9, 36, 81] in list
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Arrays Operations

• APL provides the most powerful array processing 
operations for vectors and matrixes as well as 
unary operators (for example, to reverse column 
elements)

• Python’s array assignments, but they are only 
reference changes. Python also supports array 
catenation and element membership operations

• Ruby also provides array catenation
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Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned 
array in which all of the rows have the same 
number of elements and all columns have 
the same number of elements

• A jagged matrix has rows with varying 
number of elements
– Possible when multi-dimensioned arrays 

actually appear as arrays of arrays

• C, C++, and Java support jagged arrays

• F# and C# support rectangular arrays and 
jagged arrays
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Slices

• A slice is some substructure of an array; 
nothing more than a referencing 
mechanism

• Slices are only useful in languages that 
have array operations    
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Slice Examples

• Python
vector = [2, 4, 6, 8, 10, 12, 14, 16]

mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

vector (3:6) is a three-element array

mat[0][0:2] is the first and second element of the 
first row of mat

• Ruby supports slices with the slice method

list.slice(2, 2) returns the third and fourth 
elements of list
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Implementation of Arrays

• Access function maps subscript expressions 
to an address in the array 

• Access function for single-dimensioned 
arrays:

 address(list[k]) = address (list[lower_bound])

  + ((k-lower_bound) * element_size)
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Accessing Multi-dimensioned Arrays

• Two common ways:

– Row major order (by rows) – used in most 
languages

– Column major order (by columns) – used in 
Fortran

– A compile-time descriptor

   for a multidimensional

   array
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Locating an Element in a Multi-
dimensioned Array

•General format
Location (a[I,j]) = address of a [row_lb,col_lb] + 
(((I - row_lb) * n) + (j - col_lb)) * element_size
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Compile-Time Descriptors

Single-dimensioned array Multidimensional array
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Associative Arrays

• An associative array is an unordered 
collection of data elements that are 
indexed by an equal number of values 
called keys 
– User-defined keys must be stored

• Design issues: 

    - What is the form of references to elements?

    - Is the size static or dynamic?

• Built-in type in Perl, Python, Ruby, and Lua

– In Lua, they are supported by tables
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Associative Arrays in Perl

• Names begin with %; literals are delimited 
by parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, "Wed" => 

65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

– Elements can be removed with delete

 delete $hi_temps{"Tue"};
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Record Types

• A record is a possibly heterogeneous 
aggregate of data elements in which the 
individual elements are identified by names

• Design issues:

– What is the syntactic form of references to the 
field? 

– Are elliptical references allowed
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Definition of Records in COBOL

• COBOL uses level numbers to show nested 
records; others use recursive definition
01 EMP-REC.

   02 EMP-NAME.

      05 FIRST PIC X(20).

      05 MID   PIC X(10).

      05 LAST  PIC X(20).

   02 HOURLY-RATE PIC 99V99.
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References to Records

• Record field references
1. COBOL

field_name OF record_name_1 OF ... OF record_name_n

2. Others (dot notation)

record_name_1.record_name_2. ... record_name_n.field_name

• Fully qualified references must include all record names

• Elliptical references allow leaving out record names as long 
as the reference is unambiguous, for example in COBOL

 FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are 
elliptical references to the employee’s first name
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Evaluation and Comparison to Arrays

• Records are used when collection of data 
values is heterogeneous

• Access to array elements is much slower 
than access to record fields, because 
subscripts are dynamic (field names are 
static)

• Dynamic subscripts could be used with 
record field access, but it would disallow 
type checking and it would be much slower
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Implementation of Record Type

Offset address relative to 
the beginning of the records 
is associated with each field



Tuple Types

• A tuple is a data type that is similar to a 
record, except that the elements are not 
named

• Used in Python, ML, and F# to allow 
functions to return multiple values

– Python

• Closely related to its lists, but immutable

• Create with a tuple literal

    myTuple = (3, 5.8, ′apple′)

   Referenced with subscripts (begin at 1)

Catenation with + and deleted with del
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Tuple Types (continued)

• ML

     val myTuple = (3, 5.8, ′apple′);

  - Access as follows:

    #1(myTuple) is the first element

  - A new tuple type can be defined

     type intReal = int * real;

• F#

    let tup = (3, 5, 7)

   let a, b, c = tup  This assigns a tuple to 
a tuple pattern (a, b, c)
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List Types

• Lists in Lisp and Scheme are delimited by 
parentheses and use no commas

    (A B C D) and (A (B C) D)

• Data and code have the same form

       As data, (A B C) is literally what it is

       As code, (A B C) is the function A applied to the  

         parameters B and C

• The interpreter needs to know which a list 
is, so if it is data, we quote it with an 
apostrophe

     ′(A B C) is data
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List Types (continued)

• List Operations in Scheme

– CAR returns the first element of its list parameter

   (CAR ′(A B C)) returns A

– CDR returns the remainder of its list parameter 
after the first element has been removed

   (CDR ′(A B C)) returns (B C)

 - CONS puts its first parameter into its second 
parameter, a list, to make a new list

 (CONS ′A (B C)) returns (A B C)

- LIST returns a new list of its parameters

 (LIST ′A ′B ′(C D)) returns (A B (C D))
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List Types (continued)

• List Operations in ML

– Lists are written in brackets and the elements 
are separated by commas

– List elements must be of the same type

– The Scheme CONS function is a binary operator in 
ML, ::

    3 :: [5, 7, 9] evaluates to [3, 5, 7, 9]

– The Scheme CAR and CDR functions are named hd 
and tl, respectively
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List Types (continued)

• F# Lists 

– Like those of ML, except elements are separated 
by semicolons and hd and tl are methods of the 
List class

• Python Lists

– The list data type also serves as Python’s arrays

– Unlike Scheme, Common Lisp, ML, and F#, 
Python’s lists are mutable

– Elements can be of any type

– Create a list with an assignment

    myList = [3, 5.8, "grape"]
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List Types (continued)

• Python Lists (continued)

– List elements are referenced with subscripting, 
with indices beginning at zero

    x = myList[1]    Sets x to 5.8

– List elements can be deleted with del

    del myList[1]

– List Comprehensions – derived from set 
notation

    [x * x for x in range(6) if x % 3 == 0]

     range(12) creates [0, 1, 2, 3, 4, 5, 6]

    Constructed list: [0, 9, 36]

Copyright © 2015 Pearson. All rights reserved. 1-53



List Types (continued)

• Haskell’s List Comprehensions

– The original

   [n * n | n <- [1..10]]

• F#’s List Comprehensions

    let myArray = [|for i in 1 .. 5 -> [i * i) |]

• Both C# and Java supports lists through 
their generic heap-dynamic collection 
classes, List and ArrayList, respectively
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Unions Types

• A union is a type whose variables are 
allowed to store different type values at 
different times during execution

• Design issue 

– Should type checking be required?
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Discriminated vs. Free Unions

• C and C++ provide union constructs in 
which there is no language support for type 
checking; the union in these languages is 
called free union

• Type checking of unions require that each 
union include a type indicator called a 
discriminant
– Supported by ML, Haskell, and F#



Unions in F#

• Defined with a type statement using OR
    type intReal =

       | IntValue of int

       | RealValue of float;;

    intReal is the new type

    IntValue and RealValue are constructors

   To create a value of type intReal:

    let ir1 = IntValue 17;;
   let ir2 = RealValue 3.4;;
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Unions in F# (continued)

• Accessing the value of a union is done with

   pattern matching

    match pattern with

       | expression_list1 -> expression1

       | …

       | expression_listn -> expressionn

 

   - Pattern can be any data type

   - The expression list can have wild cards (_)
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Unions in F# (continued)

Example:
   let a = 7;;

   let b = ″grape″;;

   let x = match (a, b) with

        | 4, ″apple″ -> apple

        | _, ″grape″ -> grape

        | _ -> fruit;;
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Unions in F# (continued)

To display the type of the intReal union:

  let printType value = 

     match value with

         | IntVale value -> printfn ″int″

         | RealValue value -> printfn ″float″;;

If ir1 and ir2 are defined as previously, 

  printType ir1 returns int

  printType ir2 returns float
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Evaluation of Unions

• Free unions are unsafe

– Do not allow type checking

• Java and C# do not support unions

– Reflective of growing concerns for safety in 
programming language
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Pointer and Reference Types

• A pointer type variable has a range of 
values that consists of memory addresses 
and a special value, nil 

• Provide the power of indirect addressing

• Provide a way to manage dynamic memory

• A pointer can be used to access a location 
in the area where storage is dynamically 
created (usually called a heap)
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Design Issues of Pointers

• What are the scope of and lifetime of a 
pointer variable?

• What is the lifetime of a heap-dynamic 
variable?

• Are pointers restricted as to the type of 
value to which they can point?

• Are pointers used for dynamic storage 
management, indirect addressing, or both?

• Should the language support pointer types, 
reference types, or both?
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Pointer Operations

• Two fundamental operations: assignment 
and dereferencing

• Assignment is used to set a pointer 
variable’s value to some useful address

• Dereferencing yields the value stored at the 
location represented by the pointer’s value
– Dereferencing can be explicit or implicit

– C++ uses an explicit operation via *

 j = *ptr

 sets j to the value located at ptr
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Pointer Assignment Illustrated

The assignment operation j = *ptr
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Problems with Pointers 

• Dangling pointers (dangerous)

– A pointer points to a heap-dynamic variable that has been 
deallocated

• Lost heap-dynamic variable

– An allocated heap-dynamic variable that is no longer 
accessible to the user program (often called garbage)

• Pointer p1 is set to point to a newly created heap-
dynamic variable

• Pointer p1 is later set to point to another newly created 
heap-dynamic variable

• The process of losing heap-dynamic variables is called 
memory leakage
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Pointers in C and C++

• Extremely flexible but must be used with care

• Pointers can point at any variable regardless of 
when or where it was allocated

• Used for dynamic storage management and 
addressing

• Pointer arithmetic is possible

• Explicit dereferencing and address-of operators

• Domain type need not be fixed (void *) 

   void *  can point to any type and can be type

      checked (cannot be de-referenced)
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Pointer Arithmetic in C and C++

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and  p[5]

*(p+i) is equivalent to stuff[i] and  p[i]
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Reference Types

• C++ includes a special kind of pointer type 
called a reference type that is used 
primarily for formal parameters
– Advantages of both pass-by-reference and 

pass-by-value 

• Java extends C++’s reference variables and 
allows them to replace pointers entirely
– References are references to objects, rather than 

being addresses

• C# includes both the references of Java and 
the pointers of C++
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Evaluation of Pointers

• Dangling pointers and dangling objects are 
problems as is heap management

• Pointers are like goto's--they widen the 
range of cells that can be accessed by a 
variable

• Pointers or references are necessary for 
dynamic data structures--so we can't 
design a language without them



Copyright © 2015 Pearson. All rights reserved. 1-71

Representations of Pointers

• Large computers use single values

• Intel microprocessors use segment and 
offset
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Dangling Pointer Problem

• Tombstone: extra heap cell that is a pointer to the 
heap-dynamic variable

– The actual pointer variable points only at tombstones

– When heap-dynamic variable de-allocated, tombstone 
remains but set to nil

– Costly in time and space

. Locks-and-keys: Pointer values are represented as 
(key, address) pairs

– Heap-dynamic variables are represented as variable plus 
cell for integer lock value

– When heap-dynamic variable allocated, lock value is 
created and placed in lock cell and key cell of pointer 
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Heap Management

• A very complex run-time process

• Single-size cells vs. variable-size cells

• Two approaches to reclaim garbage

– Reference counters  (eager approach): 
reclamation is gradual

– Mark-sweep  (lazy approach): reclamation 
occurs when the list of variable space becomes 
empty
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Reference Counter

• Reference counters: maintain a counter in 
every cell that store the number of pointers 
currently pointing at the cell

– Disadvantages: space required, execution time 
required, complications for cells connected 
circularly

– Advantage: it is intrinsically incremental, so 
significant delays in the application execution 
are avoided
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Mark-Sweep

• The run-time system allocates storage cells as 
requested and disconnects pointers from cells 
as necessary; mark-sweep then begins

– Every heap cell has an extra bit used by collection 
algorithm 

– All cells initially set to garbage

– All pointers traced into heap, and reachable cells 
marked as not garbage

– All garbage cells returned to list of available cells

– Disadvantages: in its original form, it was done too 
infrequently. When done, it caused significant delays in 
application execution. Contemporary mark-sweep 
algorithms avoid this by doing it more often—called 
incremental mark-sweep
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Marking Algorithm
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Variable-Size Cells

• All the difficulties of single-size cells plus 
more

• Required by most programming languages

• If mark-sweep is used, additional problems 
occur

– The initial setting of the indicators of all cells in 
the heap is difficult

– The marking process in nontrivial

– Maintaining the list of available space is another 
source of overhead



Type Checking

• Generalize the concept of operands and operators to include 
subprograms and assignments

• Type checking is the activity of ensuring that the operands of 
an operator are of compatible types

• A compatible type is one that is either legal for the operator, 
or is allowed under language rules to be implicitly converted, 
by compiler- generated code, to a legal type

– This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand 
of an inappropriate type
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Type Checking (continued)

• If all type bindings are static, nearly all type 
checking can be static

• If type bindings are dynamic, type checking 
must be dynamic

• A programming language is strongly typed 
if type errors are always detected

• Advantage of strong typing: allows the 
detection of the misuses of variables that 
result in type errors
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Strong Typing

Language examples:

– C and C++ are not: parameter type checking 
can be avoided; unions are not type checked

– Java and C# are, almost (because of explicit type 

casting)

- ML and F# are
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Strong Typing (continued)

• Coercion rules strongly affect strong 
typing--they can weaken it considerably 
(C++ versus ML and F#)

• Although Java has just half the assignment 
coercions of C++, its strong typing is still 
far less effective than that of Ada
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Name Type Equivalence

• Name type equivalence means the two  
variables have equivalent types if they are 
in either the same declaration or in 
declarations that use the same type name

• Easy to implement but highly restrictive:

– Subranges of integer types are not equivalent 
with integer types

– Formal parameters must be the same type as 
their corresponding actual parameters
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Structure Type Equivalence

• Structure type equivalence means that two 
variables have equivalent types if their 
types have identical structures

• More flexible, but harder to implement
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Type Equivalence (continued)

• Consider the problem of two structured types:

– Are two record types equivalent if they are 
structurally the same but use different field 
names?

– Are two array types equivalent if they are the 
same except that the subscripts are different?

 (e.g. [1..10] and [0..9])

– Are two enumeration types equivalent if their 
components are spelled differently?

– With structural type equivalence, you cannot 
differentiate between types of the same 
structure      (e.g. different units of speed, both 
float)
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Theory and Data Types

• Type theory is a broad area of study in 
mathematics, logic, computer science, and 
philosophy

• Two branches of type theory in computer 
science:

– Practical – data types in commercial languages

– Abstract – typed lambda calculus

• A type system is a set of types and the 
rules that govern their use in programs
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Theory and Data Types (continued)

• Formal model of a type system is a set of 
types and a collection of functions that 
define the type rules

– Either an attribute grammar or a type map could 
be used for the functions

– Finite mappings – model arrays and functions

– Cartesian products – model tuples and records

– Set unions – model union types

– Subsets – model subtypes
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Summary

• The data types of a language are a large part of 
what determines that language’s style and 
usefulness

• The primitive data types of most imperative 
languages include numeric, character, and Boolean 
types

• The user-defined enumeration and subrange types 
are convenient and add to the readability and 
reliability of programs

• Arrays and records are included in most languages

• Pointers are used for addressing flexibility and to 
control dynamic storage management
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