
ISBN 0-321—49362-1

Chapter 6

Data Types

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 6 Topics

• Introduction

• Primitive Data Types

• Character String Types

• Enumeration Types

• Array Types

• Associative Arrays

• Record Types

• Tuple Types

• List Types

• Union Types

• Pointer and Reference Types

• Type Checking

• Strong Typing

• Type Equivalence

• Theory and Data Types

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction

• A data type defines a collection of data
objects and a set of predefined operations
on those objects

• A descriptor is the collection of the
attributes of a variable

• An object represents an instance of a
user-defined (abstract data) type

• One design issue for all data types: What
operations are defined and how are they
specified?

Copyright © 2015 Pearson. All rights reserved. 1-4

Primitive Data Types

• Almost all programming languages provide
a set of primitive data types

• Primitive data types: Those not defined in
terms of other data types

• Some primitive data types are merely
reflections of the hardware

• Others require only a little non-hardware
support for their implementation

Copyright © 2015 Pearson. All rights reserved. 1-5

Primitive Data Types: Integer

• Almost always an exact reflection of the
hardware so the mapping is trivial

• There may be as many as eight different
integer types in a language

• Java’s signed integer sizes: byte, short,

int, long

Copyright © 2015 Pearson. All rights reserved. 1-6

Primitive Data Types: Floating Point

• Model real numbers, but only as
approximations

• Languages for scientific use support at
least two floating-point types (e.g., float
and double; sometimes more

• Usually exactly like the hardware, but not
always

• IEEE Floating-Point

 Standard 754

Copyright © 2015 Pearson. All rights reserved. 1-7

Primitive Data Types: Complex

• Some languages support a complex type,
e.g., C99, Fortran, and Python

• Each value consists of two floats, the real
part and the imaginary part

• Literal form (in Python):

(7 + 3j), where 7 is the real part and 3 is
the imaginary part

Copyright © 2015 Pearson. All rights reserved. 1-8

Primitive Data Types: Decimal

• For business applications (money)

– Essential to COBOL

– C# offers a decimal data type

• Store a fixed number of decimal digits, in
coded form (BCD)

• Advantage: accuracy

• Disadvantages: limited range, wastes
memory

Copyright © 2015 Pearson. All rights reserved. 1-9

Primitive Data Types: Boolean

• Simplest of all

• Range of values: two elements, one for
“true” and one for “false”

• Could be implemented as bits, but often as
bytes

– Advantage: readability

Copyright © 2015 Pearson. All rights reserved. 1-10

Primitive Data Types: Character

• Stored as numeric codings

• Most commonly used coding: ASCII

• An alternative, 16-bit coding: Unicode
(UCS-2)

– Includes characters from most natural
languages

– Originally used in Java

– C# and JavaScript also support Unicode

• 32-bit Unicode (UCS-4)

– Supported by Fortran, starting with 2003

Copyright © 2015 Pearson. All rights reserved. 1-11

Character String Types

• Values are sequences of characters

• Design issues:

– Is it a primitive type or just a special kind of
array?

– Should the length of strings be static or
dynamic?

Copyright © 2015 Pearson. All rights reserved. 1-12

Character String Types Operations

• Typical operations:

– Assignment and copying

– Comparison (=, >, etc.)

– Catenation

– Substring reference

– Pattern matching

Copyright © 2015 Pearson. All rights reserved. 1-13

Character String Type in Certain
Languages

• C and C++
– Not primitive

– Use char arrays and a library of functions that provide
operations

• SNOBOL4 (a string manipulation language)
– Primitive

– Many operations, including elaborate pattern matching

• Fortran and Python
– Primitive type with assignment and several operations

• Java
– Primitive via the String class

• Perl, JavaScript, Ruby, and PHP

 - Provide built-in pattern matching, using regular

 expressions

Copyright © 2015 Pearson. All rights reserved. 1-14

Character String Length Options

• Static: COBOL, Java’s String class

• Limited Dynamic Length: C and C++

– In these languages, a special character is used
to indicate the end of a string’s characters,
rather than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

Copyright © 2015 Pearson. All rights reserved. 1-15

Character String Type Evaluation

• Aid to writability

• As a primitive type with static length, they
are inexpensive to provide--why not have
them?

• Dynamic length is nice, but is it worth the
expense?

Copyright © 2015 Pearson. All rights reserved. 1-16

Character String Implementation

• Static length: compile-time descriptor

• Limited dynamic length: may need a run-
time descriptor for length (but not in C and
C++)

• Dynamic length: need run-time descriptor;
allocation/deallocation is the biggest
implementation problem

Copyright © 2015 Pearson. All rights reserved. 1-17

Compile- and Run-Time Descriptors

Compile-time
descriptor for
static strings

Run-time
descriptor for
limited dynamic
strings

Copyright © 2015 Pearson. All rights reserved. 1-18

User-Defined Ordinal Types

• An ordinal type is one in which the range of
possible values can be easily associated
with the set of positive integers

• Examples of primitive ordinal types in Java

– integer

– char

– boolean

Copyright © 2015 Pearson. All rights reserved. 1-19

Enumeration Types

• All possible values, which are named
constants, are provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in

more than one type definition, and if so, how is
the type of an occurrence of that constant
checked?

– Are enumeration values coerced to integer?

– Any other type coerced to an enumeration type?

Copyright © 2015 Pearson. All rights reserved. 1-20

Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a
color as a number

• Aid to reliability, e.g., compiler can check:

– operations (don’t allow colors to be added)

– No enumeration variable can be assigned a
value outside its defined range

– C# and Java 5.0 provide better support for
enumeration than C++ because enumeration
type variables in these languages are not
coerced into integer types

Copyright © 2015 Pearson. All rights reserved. 1-21

Array Types

• An array is a homogeneous aggregate of
data elements in which an individual
element is identified by its position in the
aggregate, relative to the first element.

Copyright © 2015 Pearson. All rights reserved. 1-22

Array Design Issues

• What types are legal for subscripts?

• Are subscripting expressions in element
references range checked?

• When are subscript ranges bound?

• When does allocation take place?

• Are ragged or rectangular multidimensional
arrays allowed, or both?

• What is the maximum number of subscripts?

• Can array objects be initialized?

• Are any kind of slices supported?

Copyright © 2015 Pearson. All rights reserved. 1-23

Array Indexing

• Indexing (or subscripting) is a mapping
from indices to elements

 array_name (index_value_list) → an element

• Index Syntax

– Fortran and Ada use parentheses

• Ada explicitly uses parentheses to show uniformity
between array references and function calls because
both are mappings

– Most other languages use brackets

Copyright © 2015 Pearson. All rights reserved. 1-24

Arrays Index (Subscript) Types

• FORTRAN, C: integer only

• Java: integer types only

• Index range checking

 - C, C++, Perl, and Fortran do not specify

 range checking

 - Java, ML, C# specify range checking

Copyright © 2015 Pearson. All rights reserved. 1-25

Subscript Binding and Array Categories

• Static: subscript ranges are statically bound
and storage allocation is static (before run-
time)

– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are
statically bound, but the allocation is done
at declaration time

– Advantage: space efficiency

Copyright © 2015 Pearson. All rights reserved. 1-26

Subscript Binding and Array Categories
(continued)

• Fixed heap-dynamic: similar to fixed stack-
dynamic: storage binding is dynamic but
fixed after allocation (i.e., binding is done
when requested and storage is allocated
from heap, not stack)

Copyright © 2015 Pearson. All rights reserved. 1-27

Subscript Binding and Array Categories
(continued)

• Heap-dynamic: binding of subscript ranges
and storage allocation is dynamic and can
change any number of times

– Advantage: flexibility (arrays can grow or shrink
during program execution)

Copyright © 2015 Pearson. All rights reserved. 1-28

Subscript Binding and Array Categories
(continued)

• C and C++ arrays that include static modifier
are static

• C and C++ arrays without static modifier are
fixed stack-dynamic

• C and C++ provide fixed heap-dynamic
arrays

• C# includes a second array class ArrayList
that provides fixed heap-dynamic

• Perl, JavaScript, Python, and Ruby support
heap-dynamic arrays

Copyright © 2015 Pearson. All rights reserved. 1-29

Array Initialization

• Some language allow initialization at the
time of storage allocation

– C, C++, Java, C# example

int list [] = {4, 5, 7, 83}

– Character strings in C and C++

char name [] = ″freddie″;

– Arrays of strings in C and C++

char *names [] = {″Bob″, ″Jake″, ″Joe″];

– Java initialization of String objects

String[] names = {″Bob″, ″Jake″, ″Joe″};

Copyright © 2015 Pearson. All rights reserved. 1-30

Heterogeneous Arrays

• A heterogeneous array is one in which the
elements need not be of the same type

• Supported by Perl, Python, JavaScript, and
Ruby

Array Initialization

• C-based languages
– int list [] = {1, 3, 5, 7}

– char *names [] = {″Mike″, ″Fred″, ″Mary Lou″};

• Python

– List comprehensions

 list = [x ** 2 for x in range(12) if x % 3 == 0]

 puts [0, 9, 36, 81] in list

Copyright © 2015 Pearson. All rights reserved. 1-31

Copyright © 2015 Pearson. All rights reserved. 1-32

Arrays Operations

• APL provides the most powerful array processing
operations for vectors and matrixes as well as
unary operators (for example, to reverse column
elements)

• Python’s array assignments, but they are only
reference changes. Python also supports array
catenation and element membership operations

• Ruby also provides array catenation

Copyright © 2015 Pearson. All rights reserved. 1-33

Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned
array in which all of the rows have the same
number of elements and all columns have
the same number of elements

• A jagged matrix has rows with varying
number of elements
– Possible when multi-dimensioned arrays

actually appear as arrays of arrays

• C, C++, and Java support jagged arrays

• F# and C# support rectangular arrays and
jagged arrays

Copyright © 2015 Pearson. All rights reserved. 1-34

Slices

• A slice is some substructure of an array;
nothing more than a referencing
mechanism

• Slices are only useful in languages that
have array operations

Copyright © 2015 Pearson. All rights reserved. 1-35

Slice Examples

• Python
vector = [2, 4, 6, 8, 10, 12, 14, 16]

mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

vector (3:6) is a three-element array

mat[0][0:2] is the first and second element of the
first row of mat

• Ruby supports slices with the slice method

list.slice(2, 2) returns the third and fourth
elements of list

Copyright © 2015 Pearson. All rights reserved. 1-36

Implementation of Arrays

• Access function maps subscript expressions
to an address in the array

• Access function for single-dimensioned
arrays:

 address(list[k]) = address (list[lower_bound])

 + ((k-lower_bound) * element_size)

Copyright © 2015 Pearson. All rights reserved. 1-37

Accessing Multi-dimensioned Arrays

• Two common ways:

– Row major order (by rows) – used in most
languages

– Column major order (by columns) – used in
Fortran

– A compile-time descriptor

 for a multidimensional

 array

Copyright © 2015 Pearson. All rights reserved. 1-38

Locating an Element in a Multi-
dimensioned Array

•General format
Location (a[I,j]) = address of a [row_lb,col_lb] +
(((I - row_lb) * n) + (j - col_lb)) * element_size

Copyright © 2015 Pearson. All rights reserved. 1-39

Compile-Time Descriptors

Single-dimensioned array Multidimensional array

Copyright © 2015 Pearson. All rights reserved. 1-40

Associative Arrays

• An associative array is an unordered
collection of data elements that are
indexed by an equal number of values
called keys
– User-defined keys must be stored

• Design issues:

 - What is the form of references to elements?

 - Is the size static or dynamic?

• Built-in type in Perl, Python, Ruby, and Lua

– In Lua, they are supported by tables

Copyright © 2015 Pearson. All rights reserved. 1-41

Associative Arrays in Perl

• Names begin with %; literals are delimited
by parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, "Wed" =>

65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

– Elements can be removed with delete

 delete $hi_temps{"Tue"};

Copyright © 2015 Pearson. All rights reserved. 1-42

Record Types

• A record is a possibly heterogeneous
aggregate of data elements in which the
individual elements are identified by names

• Design issues:

– What is the syntactic form of references to the
field?

– Are elliptical references allowed

Copyright © 2015 Pearson. All rights reserved. 1-43

Definition of Records in COBOL

• COBOL uses level numbers to show nested
records; others use recursive definition
01 EMP-REC.

 02 EMP-NAME.

 05 FIRST PIC X(20).

 05 MID PIC X(10).

 05 LAST PIC X(20).

 02 HOURLY-RATE PIC 99V99.

Copyright © 2015 Pearson. All rights reserved. 1-44

References to Records

• Record field references
1. COBOL

field_name OF record_name_1 OF ... OF record_name_n

2. Others (dot notation)

record_name_1.record_name_2. ... record_name_n.field_name

• Fully qualified references must include all record names

• Elliptical references allow leaving out record names as long
as the reference is unambiguous, for example in COBOL

 FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are
elliptical references to the employee’s first name

Copyright © 2015 Pearson. All rights reserved. 1-45

Evaluation and Comparison to Arrays

• Records are used when collection of data
values is heterogeneous

• Access to array elements is much slower
than access to record fields, because
subscripts are dynamic (field names are
static)

• Dynamic subscripts could be used with
record field access, but it would disallow
type checking and it would be much slower

Copyright © 2015 Pearson. All rights reserved. 1-46

Implementation of Record Type

Offset address relative to
the beginning of the records
is associated with each field

Tuple Types

• A tuple is a data type that is similar to a
record, except that the elements are not
named

• Used in Python, ML, and F# to allow
functions to return multiple values

– Python

• Closely related to its lists, but immutable

• Create with a tuple literal

 myTuple = (3, 5.8, ′apple′)

 Referenced with subscripts (begin at 1)

Catenation with + and deleted with del

Copyright © 2015 Pearson. All rights reserved. 1-47

Tuple Types (continued)

• ML

 val myTuple = (3, 5.8, ′apple′);

 - Access as follows:

 #1(myTuple) is the first element

 - A new tuple type can be defined

 type intReal = int * real;

• F#

 let tup = (3, 5, 7)

 let a, b, c = tup This assigns a tuple to
a tuple pattern (a, b, c)

Copyright © 2015 Pearson. All rights reserved. 1-48

List Types

• Lists in Lisp and Scheme are delimited by
parentheses and use no commas

 (A B C D) and (A (B C) D)

• Data and code have the same form

 As data, (A B C) is literally what it is

 As code, (A B C) is the function A applied to the

 parameters B and C

• The interpreter needs to know which a list
is, so if it is data, we quote it with an
apostrophe

 ′(A B C) is data

Copyright © 2015 Pearson. All rights reserved. 1-49

List Types (continued)

• List Operations in Scheme

– CAR returns the first element of its list parameter

 (CAR ′(A B C)) returns A

– CDR returns the remainder of its list parameter
after the first element has been removed

 (CDR ′(A B C)) returns (B C)

 - CONS puts its first parameter into its second
parameter, a list, to make a new list

 (CONS ′A (B C)) returns (A B C)

- LIST returns a new list of its parameters

 (LIST ′A ′B ′(C D)) returns (A B (C D))

Copyright © 2015 Pearson. All rights reserved. 1-50

List Types (continued)

• List Operations in ML

– Lists are written in brackets and the elements
are separated by commas

– List elements must be of the same type

– The Scheme CONS function is a binary operator in
ML, ::

 3 :: [5, 7, 9] evaluates to [3, 5, 7, 9]

– The Scheme CAR and CDR functions are named hd
and tl, respectively

Copyright © 2015 Pearson. All rights reserved. 1-51

List Types (continued)

• F# Lists

– Like those of ML, except elements are separated
by semicolons and hd and tl are methods of the
List class

• Python Lists

– The list data type also serves as Python’s arrays

– Unlike Scheme, Common Lisp, ML, and F#,
Python’s lists are mutable

– Elements can be of any type

– Create a list with an assignment

 myList = [3, 5.8, "grape"]

Copyright © 2015 Pearson. All rights reserved. 1-52

List Types (continued)

• Python Lists (continued)

– List elements are referenced with subscripting,
with indices beginning at zero

 x = myList[1] Sets x to 5.8

– List elements can be deleted with del

 del myList[1]

– List Comprehensions – derived from set
notation

 [x * x for x in range(6) if x % 3 == 0]

 range(12) creates [0, 1, 2, 3, 4, 5, 6]

 Constructed list: [0, 9, 36]

Copyright © 2015 Pearson. All rights reserved. 1-53

List Types (continued)

• Haskell’s List Comprehensions

– The original

 [n * n | n <- [1..10]]

• F#’s List Comprehensions

 let myArray = [|for i in 1 .. 5 -> [i * i) |]

• Both C# and Java supports lists through
their generic heap-dynamic collection
classes, List and ArrayList, respectively

Copyright © 2015 Pearson. All rights reserved. 1-54

Copyright © 2015 Pearson. All rights reserved. 1-55

Unions Types

• A union is a type whose variables are
allowed to store different type values at
different times during execution

• Design issue

– Should type checking be required?

Copyright © 2015 Pearson. All rights reserved. 1-56

Discriminated vs. Free Unions

• C and C++ provide union constructs in
which there is no language support for type
checking; the union in these languages is
called free union

• Type checking of unions require that each
union include a type indicator called a
discriminant
– Supported by ML, Haskell, and F#

Unions in F#

• Defined with a type statement using OR
 type intReal =

 | IntValue of int

 | RealValue of float;;

 intReal is the new type

 IntValue and RealValue are constructors

 To create a value of type intReal:

 let ir1 = IntValue 17;;
 let ir2 = RealValue 3.4;;

Copyright © 2015 Pearson. All rights reserved. 1-57

Unions in F# (continued)

• Accessing the value of a union is done with

 pattern matching

 match pattern with

 | expression_list1 -> expression1

 | …

 | expression_listn -> expressionn

 - Pattern can be any data type

 - The expression list can have wild cards (_)

Copyright © 2015 Pearson. All rights reserved. 1-58

Unions in F# (continued)

Example:
 let a = 7;;

 let b = ″grape″;;

 let x = match (a, b) with

 | 4, ″apple″ -> apple

 | _, ″grape″ -> grape

 | _ -> fruit;;

Copyright © 2015 Pearson. All rights reserved. 1-59

Unions in F# (continued)

To display the type of the intReal union:

 let printType value =

 match value with

 | IntVale value -> printfn ″int″

 | RealValue value -> printfn ″float″;;

If ir1 and ir2 are defined as previously,

 printType ir1 returns int

 printType ir2 returns float

Copyright © 2015 Pearson. All rights reserved. 1-60

Copyright © 2015 Pearson. All rights reserved. 1-61

Evaluation of Unions

• Free unions are unsafe

– Do not allow type checking

• Java and C# do not support unions

– Reflective of growing concerns for safety in
programming language

Copyright © 2015 Pearson. All rights reserved. 1-62

Pointer and Reference Types

• A pointer type variable has a range of
values that consists of memory addresses
and a special value, nil

• Provide the power of indirect addressing

• Provide a way to manage dynamic memory

• A pointer can be used to access a location
in the area where storage is dynamically
created (usually called a heap)

Copyright © 2015 Pearson. All rights reserved. 1-63

Design Issues of Pointers

• What are the scope of and lifetime of a
pointer variable?

• What is the lifetime of a heap-dynamic
variable?

• Are pointers restricted as to the type of
value to which they can point?

• Are pointers used for dynamic storage
management, indirect addressing, or both?

• Should the language support pointer types,
reference types, or both?

Copyright © 2015 Pearson. All rights reserved. 1-64

Pointer Operations

• Two fundamental operations: assignment
and dereferencing

• Assignment is used to set a pointer
variable’s value to some useful address

• Dereferencing yields the value stored at the
location represented by the pointer’s value
– Dereferencing can be explicit or implicit

– C++ uses an explicit operation via *

 j = *ptr

 sets j to the value located at ptr

Copyright © 2015 Pearson. All rights reserved. 1-65

Pointer Assignment Illustrated

The assignment operation j = *ptr

Copyright © 2015 Pearson. All rights reserved. 1-66

Problems with Pointers

• Dangling pointers (dangerous)

– A pointer points to a heap-dynamic variable that has been
deallocated

• Lost heap-dynamic variable

– An allocated heap-dynamic variable that is no longer
accessible to the user program (often called garbage)

• Pointer p1 is set to point to a newly created heap-
dynamic variable

• Pointer p1 is later set to point to another newly created
heap-dynamic variable

• The process of losing heap-dynamic variables is called
memory leakage

Copyright © 2015 Pearson. All rights reserved. 1-67

Pointers in C and C++

• Extremely flexible but must be used with care

• Pointers can point at any variable regardless of
when or where it was allocated

• Used for dynamic storage management and
addressing

• Pointer arithmetic is possible

• Explicit dereferencing and address-of operators

• Domain type need not be fixed (void *)

 void * can point to any type and can be type

 checked (cannot be de-referenced)

Copyright © 2015 Pearson. All rights reserved. 1-68

Pointer Arithmetic in C and C++

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]

*(p+i) is equivalent to stuff[i] and p[i]

Copyright © 2015 Pearson. All rights reserved. 1-69

Reference Types

• C++ includes a special kind of pointer type
called a reference type that is used
primarily for formal parameters
– Advantages of both pass-by-reference and

pass-by-value

• Java extends C++’s reference variables and
allows them to replace pointers entirely
– References are references to objects, rather than

being addresses

• C# includes both the references of Java and
the pointers of C++

Copyright © 2015 Pearson. All rights reserved. 1-70

Evaluation of Pointers

• Dangling pointers and dangling objects are
problems as is heap management

• Pointers are like goto's--they widen the
range of cells that can be accessed by a
variable

• Pointers or references are necessary for
dynamic data structures--so we can't
design a language without them

Copyright © 2015 Pearson. All rights reserved. 1-71

Representations of Pointers

• Large computers use single values

• Intel microprocessors use segment and
offset

Copyright © 2015 Pearson. All rights reserved. 1-72

Dangling Pointer Problem

• Tombstone: extra heap cell that is a pointer to the
heap-dynamic variable

– The actual pointer variable points only at tombstones

– When heap-dynamic variable de-allocated, tombstone
remains but set to nil

– Costly in time and space

. Locks-and-keys: Pointer values are represented as
(key, address) pairs

– Heap-dynamic variables are represented as variable plus
cell for integer lock value

– When heap-dynamic variable allocated, lock value is
created and placed in lock cell and key cell of pointer

Copyright © 2015 Pearson. All rights reserved. 1-73

Heap Management

• A very complex run-time process

• Single-size cells vs. variable-size cells

• Two approaches to reclaim garbage

– Reference counters (eager approach):
reclamation is gradual

– Mark-sweep (lazy approach): reclamation
occurs when the list of variable space becomes
empty

Copyright © 2015 Pearson. All rights reserved. 1-74

Reference Counter

• Reference counters: maintain a counter in
every cell that store the number of pointers
currently pointing at the cell

– Disadvantages: space required, execution time
required, complications for cells connected
circularly

– Advantage: it is intrinsically incremental, so
significant delays in the application execution
are avoided

Copyright © 2015 Pearson. All rights reserved. 1-75

Mark-Sweep

• The run-time system allocates storage cells as
requested and disconnects pointers from cells
as necessary; mark-sweep then begins

– Every heap cell has an extra bit used by collection
algorithm

– All cells initially set to garbage

– All pointers traced into heap, and reachable cells
marked as not garbage

– All garbage cells returned to list of available cells

– Disadvantages: in its original form, it was done too
infrequently. When done, it caused significant delays in
application execution. Contemporary mark-sweep
algorithms avoid this by doing it more often—called
incremental mark-sweep

Copyright © 2015 Pearson. All rights reserved. 1-76

Marking Algorithm

Copyright © 2015 Pearson. All rights reserved. 1-77

Variable-Size Cells

• All the difficulties of single-size cells plus
more

• Required by most programming languages

• If mark-sweep is used, additional problems
occur

– The initial setting of the indicators of all cells in
the heap is difficult

– The marking process in nontrivial

– Maintaining the list of available space is another
source of overhead

Type Checking

• Generalize the concept of operands and operators to include
subprograms and assignments

• Type checking is the activity of ensuring that the operands of
an operator are of compatible types

• A compatible type is one that is either legal for the operator,
or is allowed under language rules to be implicitly converted,
by compiler- generated code, to a legal type

– This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand
of an inappropriate type

Copyright © 2015 Pearson. All rights reserved. 1-78

Type Checking (continued)

• If all type bindings are static, nearly all type
checking can be static

• If type bindings are dynamic, type checking
must be dynamic

• A programming language is strongly typed
if type errors are always detected

• Advantage of strong typing: allows the
detection of the misuses of variables that
result in type errors

Copyright © 2015 Pearson. All rights reserved. 1-79

Strong Typing

Language examples:

– C and C++ are not: parameter type checking
can be avoided; unions are not type checked

– Java and C# are, almost (because of explicit type

casting)

- ML and F# are

Copyright © 2015 Pearson. All rights reserved. 1-80

Strong Typing (continued)

• Coercion rules strongly affect strong
typing--they can weaken it considerably
(C++ versus ML and F#)

• Although Java has just half the assignment
coercions of C++, its strong typing is still
far less effective than that of Ada

Copyright © 2015 Pearson. All rights reserved. 1-81

Name Type Equivalence

• Name type equivalence means the two
variables have equivalent types if they are
in either the same declaration or in
declarations that use the same type name

• Easy to implement but highly restrictive:

– Subranges of integer types are not equivalent
with integer types

– Formal parameters must be the same type as
their corresponding actual parameters

Copyright © 2015 Pearson. All rights reserved. 1-82

Structure Type Equivalence

• Structure type equivalence means that two
variables have equivalent types if their
types have identical structures

• More flexible, but harder to implement

Copyright © 2015 Pearson. All rights reserved. 1-83

Type Equivalence (continued)

• Consider the problem of two structured types:

– Are two record types equivalent if they are
structurally the same but use different field
names?

– Are two array types equivalent if they are the
same except that the subscripts are different?

 (e.g. [1..10] and [0..9])

– Are two enumeration types equivalent if their
components are spelled differently?

– With structural type equivalence, you cannot
differentiate between types of the same
structure (e.g. different units of speed, both
float)

Copyright © 2015 Pearson. All rights reserved. 1-84

Theory and Data Types

• Type theory is a broad area of study in
mathematics, logic, computer science, and
philosophy

• Two branches of type theory in computer
science:

– Practical – data types in commercial languages

– Abstract – typed lambda calculus

• A type system is a set of types and the
rules that govern their use in programs

Copyright © 2015 Pearson. All rights reserved. 1-85

Theory and Data Types (continued)

• Formal model of a type system is a set of
types and a collection of functions that
define the type rules

– Either an attribute grammar or a type map could
be used for the functions

– Finite mappings – model arrays and functions

– Cartesian products – model tuples and records

– Set unions – model union types

– Subsets – model subtypes

Copyright © 2015 Pearson. All rights reserved. 1-86

Copyright © 2015 Pearson. All rights reserved. 1-87

Summary

• The data types of a language are a large part of
what determines that language’s style and
usefulness

• The primitive data types of most imperative
languages include numeric, character, and Boolean
types

• The user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

• Arrays and records are included in most languages

• Pointers are used for addressing flexibility and to
control dynamic storage management

	Slide 1: Chapter 6
	Slide 2: Chapter 6 Topics
	Slide 3: Introduction
	Slide 4: Primitive Data Types
	Slide 5: Primitive Data Types: Integer
	Slide 6: Primitive Data Types: Floating Point
	Slide 7: Primitive Data Types: Complex
	Slide 8: Primitive Data Types: Decimal
	Slide 9: Primitive Data Types: Boolean
	Slide 10: Primitive Data Types: Character
	Slide 11: Character String Types
	Slide 12: Character String Types Operations
	Slide 13: Character String Type in Certain Languages
	Slide 14: Character String Length Options
	Slide 15: Character String Type Evaluation
	Slide 16: Character String Implementation
	Slide 17: Compile- and Run-Time Descriptors
	Slide 18: User-Defined Ordinal Types
	Slide 19: Enumeration Types
	Slide 20: Evaluation of Enumerated Type
	Slide 21: Array Types
	Slide 22: Array Design Issues
	Slide 23: Array Indexing
	Slide 24: Arrays Index (Subscript) Types
	Slide 25: Subscript Binding and Array Categories
	Slide 26: Subscript Binding and Array Categories (continued)
	Slide 27: Subscript Binding and Array Categories (continued)
	Slide 28: Subscript Binding and Array Categories (continued)
	Slide 29: Array Initialization
	Slide 30: Heterogeneous Arrays
	Slide 31: Array Initialization
	Slide 32: Arrays Operations
	Slide 33: Rectangular and Jagged Arrays
	Slide 34: Slices
	Slide 35: Slice Examples
	Slide 36: Implementation of Arrays
	Slide 37: Accessing Multi-dimensioned Arrays
	Slide 38: Locating an Element in a Multi-dimensioned Array
	Slide 39: Compile-Time Descriptors
	Slide 40: Associative Arrays
	Slide 41: Associative Arrays in Perl
	Slide 42: Record Types
	Slide 43: Definition of Records in COBOL
	Slide 44: References to Records
	Slide 45: Evaluation and Comparison to Arrays
	Slide 46: Implementation of Record Type
	Slide 47: Tuple Types
	Slide 48: Tuple Types (continued)
	Slide 49: List Types
	Slide 50: List Types (continued)
	Slide 51: List Types (continued)
	Slide 52: List Types (continued)
	Slide 53: List Types (continued)
	Slide 54: List Types (continued)
	Slide 55: Unions Types
	Slide 56: Discriminated vs. Free Unions
	Slide 57: Unions in F#
	Slide 58: Unions in F# (continued)
	Slide 59: Unions in F# (continued)
	Slide 60: Unions in F# (continued)
	Slide 61: Evaluation of Unions
	Slide 62: Pointer and Reference Types
	Slide 63: Design Issues of Pointers
	Slide 64: Pointer Operations
	Slide 65: Pointer Assignment Illustrated
	Slide 66: Problems with Pointers
	Slide 67: Pointers in C and C++
	Slide 68: Pointer Arithmetic in C and C++
	Slide 69: Reference Types
	Slide 70: Evaluation of Pointers
	Slide 71: Representations of Pointers
	Slide 72: Dangling Pointer Problem
	Slide 73: Heap Management
	Slide 74: Reference Counter
	Slide 75: Mark-Sweep
	Slide 76: Marking Algorithm
	Slide 77: Variable-Size Cells
	Slide 78: Type Checking
	Slide 79: Type Checking (continued)
	Slide 80: Strong Typing
	Slide 81: Strong Typing (continued)
	Slide 82: Name Type Equivalence
	Slide 83: Structure Type Equivalence
	Slide 84: Type Equivalence (continued)
	Slide 85: Theory and Data Types
	Slide 86: Theory and Data Types (continued)
	Slide 87: Summary

