
ISBN 0-321-49362-1

Chapter 7

Expressions and
Assignment
Statements

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 7 Topics

• Introduction

• Arithmetic Expressions

• Overloaded Operators

• Type Conversions

• Relational and Boolean Expressions

• Short-Circuit Evaluation

• Assignment Statements

• Mixed-Mode Assignment

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction

• Expressions are the fundamental means of
specifying computations in a programming
language

• To understand expression evaluation, need
to be familiar with the orders of operator
and operand evaluation

• Essence of imperative languages is
dominant role of assignment statements

Copyright © 2015 Pearson. All rights reserved. 1-4

Arithmetic Expressions

• Arithmetic evaluation was one of the
motivations for the development of the first
programming languages

• Arithmetic expressions consist of
operators, operands, parentheses, and
function calls

Copyright © 2015 Pearson. All rights reserved. 1-5

Arithmetic Expressions: Design Issues

• Design issues for arithmetic expressions

– Operator precedence rules?

– Operator associativity rules?

– Order of operand evaluation?

– Operand evaluation side effects?

– Operator overloading?

– Type mixing in expressions?

Copyright © 2015 Pearson. All rights reserved. 1-6

Arithmetic Expressions: Operators

• A unary operator has one operand

• A binary operator has two operands

• A ternary operator has three operands

Copyright © 2015 Pearson. All rights reserved. 1-7

Arithmetic Expressions: Operator
Precedence Rules

• The operator precedence rules for
expression evaluation define the order in
which “adjacent” operators of different
precedence levels are evaluated

• Typical precedence levels
– parentheses

– unary operators

– ** (if the language supports it)

– *, /

– +, -

Copyright © 2015 Pearson. All rights reserved. 1-8

Arithmetic Expressions: Operator
Associativity Rule

• The operator associativity rules for expression
evaluation define the order in which adjacent
operators with the same precedence level are
evaluated

• Typical associativity rules
– Left to right, except **, which is right to left

– Sometimes unary operators associate right to left (e.g., in
FORTRAN)

• APL is different; all operators have equal
precedence and all operators associate right to left

• Precedence and associativity rules can be overriden
with parentheses

Copyright © 2015 Pearson. All rights reserved. 1-9

Expressions in Ruby and Scheme

• Ruby

– All arithmetic, relational, and assignment
operators, as well as array indexing, shifts, and
bit-wise logic operators, are implemented as
methods

 - One result of this is that these operators can all

 be overriden by application programs

• Scheme (and Common Lisp)

- All arithmetic and logic operations are by
explicitly called subprograms

- a + b * c is coded as (+ a (* b c))

Copyright © 2015 Pearson. All rights reserved. 1-10

Arithmetic Expressions: Conditional
Expressions

• Conditional Expressions

– C-based languages (e.g., C, C++)

– An example:

 average = (count == 0)? 0 : sum / count

– Evaluates as if written as follows:
 if (count == 0)

 average = 0

 else

 average = sum /count

Copyright © 2015 Pearson. All rights reserved. 1-11

Arithmetic Expressions: Operand
Evaluation Order

• Operand evaluation order
1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory;
sometimes the constant is in the machine
language instruction

3. Parenthesized expressions: evaluate all
operands and operators first

4. The most interesting case is when an operand
is a function call

Copyright © 2015 Pearson. All rights reserved. 1-12

Arithmetic Expressions: Potentials for
Side Effects

• Functional side effects: when a function changes a
two-way parameter or a non-local variable

• Problem with functional side effects:

– When a function referenced in an expression alters
another operand of the expression; e.g., for a parameter
change:

 a = 10;

 /* assume that fun changes its parameter */

 b = a + fun(&a);

Copyright © 2015 Pearson. All rights reserved. 1-13

Functional Side Effects

• Two possible solutions to the problem

1. Write the language definition to disallow functional side
effects

• No two-way parameters in functions

• No non-local references in functions

• Advantage: it works!

• Disadvantage: inflexibility of one-way parameters and
lack of non-local references

2. Write the language definition to demand that operand
evaluation order be fixed

• Disadvantage: limits some compiler optimizations

• Java requires that operands appear to be evaluated in
left-to-right order

• A program has the property of referential
transparency if any two expressions in the
program that have the same value can be
substituted for one another anywhere in the
program, without affecting the action of the
program
 result1 = (fun(a) + b) / (fun(a) – c);

 temp = fun(a);

 result2 = (temp + b) / (temp – c);

If fun has no side effects, result1 = result2

Otherwise, not, and referential transparency is violated

Referential Transparency

Copyright © 2015 Pearson. All rights reserved. 1-14

• Advantage of referential transparency

– Semantics of a program is much easier to
understand if it has referential transparency

• Because they do not have variables,
programs in pure functional languages are
referentially transparent

– Functions cannot have state, which would be
stored in local variables

– If a function uses an outside value, it must be a
constant (there are no variables). So, the value
of a function depends only on its parameters

Referential Transparency (continued)

Copyright © 2015 Pearson. All rights reserved. 1-15

Copyright © 2015 Pearson. All rights reserved. 1-16

Overloaded Operators

• Use of an operator for more than one
purpose is called operator overloading

• Some are common (e.g., + for int and
float)

• Some are potential trouble (e.g., * in C and
C++)
– Loss of compiler error detection (omission of an

operand should be a detectable error)

– Some loss of readability

Copyright © 2015 Pearson. All rights reserved. 1-17

Overloaded Operators (continued)

• C++, C#, and F# allow user-defined
overloaded operators

– When sensibly used, such operators can be an
aid to readability (avoid method calls,
expressions appear natural)

– Potential problems:

• Users can define nonsense operations

• Readability may suffer, even when the operators
make sense

Copyright © 2015 Pearson. All rights reserved. 1-18

Type Conversions

• A narrowing conversion is one that converts
an object to a type that cannot include all
of the values of the original type e.g., float
to int

• A widening conversion is one in which an
object is converted to a type that can
include at least approximations to all of the
values of the original type
e.g., int to float

Copyright © 2015 Pearson. All rights reserved. 1-19

Type Conversions: Mixed Mode

• A mixed-mode expression is one that has
operands of different types

• A coercion is an implicit type conversion

• Disadvantage of coercions:

– They decrease in the type error detection ability of the
compiler

• In most languages, all numeric types are coerced
in expressions, using widening conversions

• In ML and F#, there are no coercions in
expressions

Copyright © 2015 Pearson. All rights reserved. 1-20

Explicit Type Conversions

• Called casting in C-based languages

• Examples
– C: (int)angle

– F#: float(sum)

 Note that F#’s syntax is similar to that of
function calls

Copyright © 2015 Pearson. All rights reserved. 1-21

Errors in Expressions

• Causes

– Inherent limitations of arithmetic
e.g., division by zero

– Limitations of computer arithmetic
e.g. overflow

• Often ignored by the run-time system

Copyright © 2015 Pearson. All rights reserved. 1-22

Relational and Boolean Expressions

• Relational Expressions

– Use relational operators and operands of
various types

– Evaluate to some Boolean representation

– Operator symbols used vary somewhat among
languages (!=, /=, ~=, .NE., <>, #)

• JavaScript and PHP have two additional
relational operator, === and !==

- Similar to their cousins, == and !=, except that
they do not coerce their operands

– Ruby uses == for equality relation operator that
uses coercions and eql? for those that do not

Copyright © 2015 Pearson. All rights reserved. 1-23

Relational and Boolean Expressions

• Boolean Expressions

– Operands are Boolean and the result is Boolean

– Example operators

• C89 has no Boolean type--it uses int type
with 0 for false and nonzero for true

• One odd characteristic of C’s expressions:
a < b < c is a legal expression, but the
result is not what you might expect:

– Left operator is evaluated, producing 0 or 1

– The evaluation result is then compared with the
third operand (i.e., c)

Copyright © 2015 Pearson. All rights reserved. 1-24

Short Circuit Evaluation

• An expression in which the result is
determined without evaluating all of the
operands and/or operators

• Example: (13 * a) * (b / 13 – 1)
If a is zero, there is no need to evaluate (b /13
- 1)

• Problem with non-short-circuit evaluation
index = 0;

while (index <= length) && (LIST[index] != value)

 index++;

– When index=length, LIST[index] will cause an
indexing problem (assuming LIST is length - 1 long)

Copyright © 2015 Pearson. All rights reserved. 1-25

Short Circuit Evaluation (continued)

• C, C++, and Java: use short-circuit evaluation for
the usual Boolean operators (&& and ||), but also
provide bitwise Boolean operators that are not
short circuit (& and |)

• All logic operators in Ruby, Perl, ML, F#, and
Python are short-circuit evaluated

• Short-circuit evaluation exposes the potential
problem of side effects in expressions
e.g. (a > b) || (b++ / 3)

Copyright © 2015 Pearson. All rights reserved. 1-26

Assignment Statements

• The general syntax
<target_var> <assign_operator> <expression>

• The assignment operator

= Fortran, BASIC, the C-based languages

:= Ada

• = can be bad when it is overloaded for the
relational operator for equality (that’s why
the C-based languages use == as the
relational operator)

Copyright © 2015 Pearson. All rights reserved. 1-27

Assignment Statements: Conditional
Targets

• Conditional targets (Perl)
($flag ? $total : $subtotal) = 0

Which is equivalent to

if ($flag){

 $total = 0

} else {

 $subtotal = 0

}

Copyright © 2015 Pearson. All rights reserved. 1-28

Assignment Statements: Compound
Assignment Operators

• A shorthand method of specifying a
commonly needed form of assignment

• Introduced in ALGOL; adopted by C and the
C-based languaes
– Example

a = a + b

can be written as

a += b

Copyright © 2015 Pearson. All rights reserved. 1-29

Assignment Statements: Unary
Assignment Operators

• Unary assignment operators in C-based
languages combine increment and
decrement operations with assignment

• Examples

sum = ++count (count incremented, then assigned
to sum)

sum = count++ (count assigned to sum, then
incremented

count++ (count incremented)

-count++ (count incremented then negated)

Copyright © 2015 Pearson. All rights reserved. 1-30

Assignment as an Expression

• In the C-based languages, Perl, and
JavaScript, the assignment statement
produces a result and can be used as an
operand

 while ((ch = getchar())!= EOF){…}

 ch = getchar() is carried out; the result
(assigned to ch) is used as a conditional
value for the while statement

• Disadvantage: another kind of expression
side effect

Copyright © 2015 Pearson. All rights reserved. 1-31

Multiple Assignments

• Perl, Ruby, and Lua allow multiple-target
multiple-source assignments

 ($first, $second, $third) = (20, 30, 40);

 Also, the following is legal and performs an interchange:

 ($first, $second) = ($second, $first);

• Identifiers in functional languages are only
names of values

• ML

– Names are bound to values with val

 val fruit = apples + oranges;

- If another val for fruit follows, it is a new and
different name

• F#

– F#’s let is like ML’s val, except let also creates
a new scope

Assignment in Functional Languages

Copyright © 2015 Pearson. All rights reserved. 1-32

Copyright © 2015 Pearson. All rights reserved. 1-33

Mixed-Mode Assignment

• Assignment statements can also be
mixed-mode

• In Fortran, C, Perl, and C++, any numeric
type value can be assigned to any
numeric type variable

• In Java and C#, only widening assignment
coercions are done

• In Ada, there is no assignment coercion

Copyright © 2015 Pearson. All rights reserved. 1-34

Summary

• Expressions

• Operator precedence and associativity

• Operator overloading

• Mixed-type expressions

• Various forms of assignment

	Slide 1: Chapter 7
	Slide 2: Chapter 7 Topics
	Slide 3: Introduction
	Slide 4: Arithmetic Expressions
	Slide 5: Arithmetic Expressions: Design Issues
	Slide 6: Arithmetic Expressions: Operators
	Slide 7: Arithmetic Expressions: Operator Precedence Rules
	Slide 8: Arithmetic Expressions: Operator Associativity Rule
	Slide 9: Expressions in Ruby and Scheme
	Slide 10: Arithmetic Expressions: Conditional Expressions
	Slide 11: Arithmetic Expressions: Operand Evaluation Order
	Slide 12: Arithmetic Expressions: Potentials for Side Effects
	Slide 13: Functional Side Effects
	Slide 14: Referential Transparency
	Slide 15: Referential Transparency (continued)
	Slide 16: Overloaded Operators
	Slide 17: Overloaded Operators (continued)
	Slide 18: Type Conversions
	Slide 19: Type Conversions: Mixed Mode
	Slide 20: Explicit Type Conversions
	Slide 21: Errors in Expressions
	Slide 22: Relational and Boolean Expressions
	Slide 23: Relational and Boolean Expressions
	Slide 24: Short Circuit Evaluation
	Slide 25: Short Circuit Evaluation (continued)
	Slide 26: Assignment Statements
	Slide 27: Assignment Statements: Conditional Targets
	Slide 28: Assignment Statements: Compound Assignment Operators
	Slide 29: Assignment Statements: Unary Assignment Operators
	Slide 30: Assignment as an Expression
	Slide 31: Multiple Assignments
	Slide 32: Assignment in Functional Languages
	Slide 33: Mixed-Mode Assignment
	Slide 34: Summary

