
ISBN 0-321-49362-1

Chapter 8

Statement-Level
Control Structures

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 8 Topics

• Introduction

• Selection Statements

• Iterative Statements

• Unconditional Branching

• Guarded Commands

• Conclusions

Copyright © 2015 Pearson. All rights reserved. 1-3

Levels of Control Flow

– Within expressions (Chapter 7)

– Among program units (Chapter 9)

– Among program statements (this chapter)

Copyright © 2015 Pearson. All rights reserved. 1-4

Control Statements: Evolution

• FORTRAN I control statements were based
directly on IBM 704 hardware

• Much research and argument in the 1960s
about the issue

– One important result: It was proven that all
algorithms represented by flowcharts can be
coded with only two-way selection and pretest
logical loops

Copyright © 2015 Pearson. All rights reserved. 1-5

Control Structure

• A control structure is a control statement
and the statements whose execution it
controls

• Design question

– Should a control structure have multiple entries?

Copyright © 2015 Pearson. All rights reserved. 1-6

Selection Statements

• A selection statement provides the means
of choosing between two or more paths of
execution

• Two general categories:

– Two-way selectors

– Multiple-way selectors

Copyright © 2015 Pearson. All rights reserved. 1-7

Two-Way Selection Statements

• General form:

 if control_expression

 then clause

 else clause

• Design Issues:
– What is the form and type of the control

expression?

– How are the then and else clauses specified?

– How should the meaning of nested selectors be
specified?

Copyright © 2015 Pearson. All rights reserved. 1-8

The Control Expression

• If the then reserved word or some other
syntactic marker is not used to introduce
the then clause, the control expression is
placed in parentheses

• In C89, C99, Python, and C++, the control
expression can be arithmetic

• In most other languages, the control
expression must be Boolean

Copyright © 2015 Pearson. All rights reserved. 1-9

Clause Form

• In many contemporary languages, the then and
else clauses can be single statements or compound
statements

• In Perl, all clauses must be delimited by braces
(they must be compound)

• In Python and Ruby, clauses are statement
sequences

• Python uses indentation to define clauses

 if x > y :

 x = y

 print " x was greater than y"

Copyright © 2015 Pearson. All rights reserved. 1-10

Nesting Selectors

• Java example

 if (sum == 0)

 if (count == 0)

 result = 0;

 else result = 1;

• Which if gets the else?

• Java's static semantics rule: else matches
with the nearest previous if

Copyright © 2015 Pearson. All rights reserved. 1-11

Nesting Selectors (continued)

• To force an alternative semantics,
compound statements may be used:

 if (sum == 0) {

 if (count == 0)

 result = 0;

 }

 else result = 1;

• The above solution is used in C, C++, and C#

Copyright © 2015 Pearson. All rights reserved. 1-12

Nesting Selectors (continued)

• Statement sequences as clauses: Ruby

 if sum == 0 then

 if count == 0 then

 result = 0

 else

 result = 1

 end

 end

Copyright © 2015 Pearson. All rights reserved. 1-13

Nesting Selectors (continued)

• Python

 if sum == 0 :

 if count == 0 :

 result = 0

 else :

 result = 1

Selector Expressions

• In ML, F#, and Lisp, the selector is an
expression; in F#:

 let y =
 if x > 0 then x

 else 2 * x

- If the if expression returns a value, there must
be an else clause (the expression could produce
a unit type, which has no value). The types of
the values returned by then and else clauses
must be the same.

Copyright © 2015 Pearson. All rights reserved. 1-14

Copyright © 2015 Pearson. All rights reserved. 1-15

Multiple-Way Selection Statements

• Allow the selection of one of any number of
statements or statement groups

• Design Issues:

1. What is the form and type of the control expression?

2. How are the selectable segments specified?

3. Is execution flow through the structure restricted to
include just a single selectable segment?

4. How are case values specified?

5. What is done about unrepresented expression values?

Copyright © 2015 Pearson. All rights reserved. 1-16

Multiple-Way Selection: Examples

• C, C++, Java, and JavaScript

 switch (expression) {

 case const_expr1: stmt1;

 …

 case const_exprn: stmtn;

 [default: stmtn+1]

 }

Copyright © 2015 Pearson. All rights reserved. 1-17

Multiple-Way Selection: Examples

• Design choices for C’s switch statement

1. Control expression can be only an integer type

2. Selectable segments can be statement sequences,
blocks, or compound statements

3. Any number of segments can be executed in one
execution of the construct (there is no implicit
branch at the end of selectable segments)

4. default clause is for unrepresented values (if
there is no default, the whole statement does
nothing)

Copyright © 2015 Pearson. All rights reserved. 1-18

Multiple-Way Selection: Examples

• C#

– Differs from C in that it has a static semantics
rule that disallows the implicit execution of
more than one segment

– Each selectable segment must end with an
unconditional branch (goto or break)

– Also, in C# the control expression and the case
constants can be strings

Copyright © 2015 Pearson. All rights reserved. 1-19

Multiple-Way Selection: Examples

• Ruby has two forms of case statements-we’ll cover

 only one

 leap = case

 when year % 400 == 0 then true

 when year % 100 == 0 then false

 else year % 4 == 0

 end

Implementing Multiple Selectors

• Approaches:

– Multiple conditional branches

– Store case values in a table and use a linear
search of the table

– When there are more than ten cases, a hash
table of case values can be used

– If the number of cases is small and more than
half of the whole range of case values are
represented, an array whose indices are the case
values and whose values are the case labels can
be used

Copyright © 2015 Pearson. All rights reserved. 1-20

Copyright © 2015 Pearson. All rights reserved. 1-21

Multiple-Way Selection Using if

• Multiple Selectors can appear as direct
extensions to two-way selectors, using
else-if clauses, for example in Python:

 if count < 10 :

 bag1 = True

 elif count < 100 :

 bag2 = True

 elif count < 1000 :

 bag3 = True

Copyright © 2015 Pearson. All rights reserved. 1-22

Multiple-Way Selection Using if

• The Python example can be written as a
Ruby case

 case

 when count < 10 then bag1 = true

 when count < 100 then bag2 = true

 when count < 1000 then bag3 = true

 end

Scheme’s Multiple Selector

• General form of a call to COND:

 (COND
 (predicate1 expression1)

 …

 (predicaten expressionn)

 [(ELSE expressionn+1)]

)

- The ELSE clause is optional; ELSE is a synonym
for true

- Each predicate-expression pair is a parameter

- Semantics: The value of the evaluation of COND is
the value of the expression associated with the
first predicate expression that is true

Copyright © 2015 Pearson. All rights reserved. 1-23

Copyright © 2015 Pearson. All rights reserved. 1-24

Iterative Statements

• The repeated execution of a statement or
compound statement is accomplished
either by iteration or recursion

• General design issues for iteration control
statements:

1. How is iteration controlled?

2. Where is the control mechanism in the loop?

Copyright © 2015 Pearson. All rights reserved. 1-25

Counter-Controlled Loops

• A counting iterative statement has a loop
variable, and a means of specifying the
initial and terminal, and stepsize values

• Design Issues:

1. What are the type and scope of the loop
variable?

2. Should it be legal for the loop variable or loop
parameters to be changed in the loop body,
and if so, does the change affect loop control?

3. Should the loop parameters be evaluated only
once, or once for every iteration?

Copyright © 2015 Pearson. All rights reserved. 1-26

Counter-Controlled Loops: Examples

• C-based languages
for ([expr_1] ; [expr_2] ; [expr_3]) statement

 - The expressions can be whole statements, or even
statement sequences, with the statements separated by
commas
– The value of a multiple-statement expression is the value of the

last statement in the expression

– If the second expression is absent, it is an infinite loop

• Design choices:
- There is no explicit loop variable

- Everything can be changed in the loop

- The first expression is evaluated once, but the other two

 are evaluated with each iteration

- It is legal to branch into the body of a for loop in C

Copyright © 2015 Pearson. All rights reserved. 1-27

Counter-Controlled Loops: Examples

• C++ differs from C in two ways:

1. The control expression can also be Boolean

2. The initial expression can include variable
definitions (scope is from the definition to the
end of the loop body)

• Java and C#

– Differs from C++ in that the control
expression must be Boolean

Copyright © 2015 Pearson. All rights reserved. 1-28

Counter-Controlled Loops: Examples

• Python
 for loop_variable in object:
 - loop body
 [else:
 - else clause]

– The object is often a range, which is either a list of values
in brackets ([2, 4, 6]), or a call to the range function
(range(5), which returns 0, 1, 2, 3, 4

– The loop variable takes on the values specified in the
given range, one for each iteration

– The else clause, which is optional, is executed if the loop
terminates normally

Counter-Controlled Loops: Examples

• F#
– Because counters require variables, and functional

languages do not have variables, counter-controlled
loops must be simulated with recursive functions

 let rec forLoop loopBody reps =

 if reps <= 0 then ()

 else

 loopBody()

 forLoop loopBody, (reps – 1)

- This defines the recursive function forLoop with the
parameters loopBody (a function that defines the

loop’s body) and the number of repetitions

- () means do nothing and return nothing

Copyright © 2015 Pearson. All rights reserved. 1-29

Copyright © 2015 Pearson. All rights reserved. 1-30

Logically-Controlled Loops

• Repetition control is based on a Boolean
expression

• Design issues:

– Pretest or posttest?

– Should the logically controlled loop be a
special case of the counting loop statement or
a separate statement?

Copyright © 2015 Pearson. All rights reserved. 1-31

Logically-Controlled Loops: Examples

• C and C++ have both pretest and posttest forms, in
which the control expression can be arithmetic:

 while (control_expr) do

 loop body loop body

 while (control_expr)

 - In both C and C++ it is legal to branch into the body

 of a logically-controlled loop

• Java is like C and C++, except the control
expression must be Boolean (and the body can only
be entered at the beginning -- Java has no goto

Copyright © 2015 Pearson. All rights reserved. 1-32

Logically-Controlled Loops: Examples

• F#

– As with counter-controlled loops, logically-
controlled loops can be simulated with recursive
functions

 let rec whileLoop test body =

 if test() then

 body()

 whileLoop test body

 else ()

- This defines the recursive function whileLoop
with parameters test and body, both functions.
test defines the control expression

Copyright © 2015 Pearson. All rights reserved. 1-33

User-Located Loop Control Mechanisms

• Sometimes it is convenient for the
programmers to decide a location for loop
control (other than top or bottom of the
loop)

• Simple design for single loops (e.g., break)

• Design issues for nested loops

1. Should the conditional be part of the exit?

2. Should control be transferable out of more
than one loop?

Copyright © 2015 Pearson. All rights reserved. 1-34

User-Located Loop Control Mechanisms

• C , C++, Python, Ruby, and C# have
unconditional unlabeled exits (break)

• Java and Perl have unconditional labeled
exits (break in Java, last in Perl)

• C, C++, and Python have an unlabeled
control statement, continue, that skips the
remainder of the current iteration, but does
not exit the loop

• Java and Perl have labeled versions of
continue

Copyright © 2015 Pearson. All rights reserved. 1-35

Iteration Based on Data Structures

• The number of elements in a data structure
controls loop iteration

• Control mechanism is a call to an iterator
function that returns the next element in
some chosen order, if there is one; else
loop is terminate

• C's for can be used to build a user-defined
iterator:

 for (p=root; p==NULL; traverse(p)){

 ...

 }

Copyright © 2015 Pearson. All rights reserved. 1-36

Iteration Based on Data Structures (continued)

• PHP

 - current points at one element of the array

 - next moves current to the next element

 - reset moves current to the first element

• Java 5.0 (uses for, although it is called
foreach)

 For arrays and any other class that implements the
Iterable interface, e.g., ArrayList

 for (String myElement : myList) { … }

Copyright © 2015 Pearson. All rights reserved. 1-37

Iteration Based on Data Structures (continued)

• C# and F# (and the other .NET languages) have

 generic library classes, like Java 5.0 (for arrays,

 lists, stacks, and queues). Can iterate over

 these with the foreach statement. User-defined

 collections can implement the IEnumerator

 interface and also use foreach.

 List<String> names = new List<String>();

 names.Add("Bob");

 names.Add("Carol");

 names.Add("Ted");

 foreach (Strings name in names)

 Console.WriteLine ("Name: {0}", name);

Iteration Based on Data Structures (continued)

• Ruby blocks are sequences of code, delimited by
either braces or do and end

– Blocks can be used with methods to create iterators

– Predefined iterator methods (times, each, upto):

 3.times {puts ″Hey!″}

 list.each {|value| puts value}

 (list is an array; value is a block parameter)
 1.upto(5) {|x| print x, ″ ″}

Iterators are implemented with blocks, which can
also be defined by applications

Copyright © 2015 Pearson. All rights reserved. 1-38

Iteration Based on Data Structures (continued)

• Ruby blocks are attached methods calls; they can have
parameters (in vertical bars); they are executed when the
method executes a yield statement

 def fibonacci(last)
 first, second = 1, 1

 while first <= last

 yield first

 first, second = second, first + second

 end

 end

 puts "Fibonacci numbers less than 100 are:"

 fibonacci(100) {|num| print num, " "}

 puts

- Ruby has a for statement, but Ruby converts them to upto
method calls

Copyright © 2015 Pearson. All rights reserved. 1-39

Copyright © 2015 Pearson. All rights reserved. 1-40

Unconditional Branching

• Transfers execution control to a specified place in
the program

• Represented one of the most heated debates in
1960’s and 1970’s

• Major concern: Readability

• Some languages do not support goto statement
(e.g., Java)

• C# offers goto statement (can be used in switch
statements)

• Loop exit statements are restricted and somewhat
camouflaged goto’s

Copyright © 2015 Pearson. All rights reserved. 1-41

Guarded Commands

• Designed by Dijkstra

• Purpose: to support a new programming
methodology that supported verification
(correctness) during development

• Basis for two linguistic mechanisms for
concurrent programming (in CSP)

• Basic Idea: if the order of evaluation is not
important, the program should not specify
one

Copyright © 2015 Pearson. All rights reserved. 1-42

Selection Guarded Command

• Form
if <Boolean expr> -> <statement>

[] <Boolean expr> -> <statement>

 ...

[] <Boolean expr> -> <statement>

fi

• Semantics: when construct is reached,
– Evaluate all Boolean expressions

– If more than one are true, choose one non-
deterministically

– If none are true, it is a runtime error

Copyright © 2015 Pearson. All rights reserved. 1-43

Loop Guarded Command

• Form
do <Boolean> -> <statement>

[] <Boolean> -> <statement>

 ...

[] <Boolean> -> <statement>
od

• Semantics: for each iteration
– Evaluate all Boolean expressions

– If more than one are true, choose one non-
deterministically; then start loop again

– If none are true, exit loop

Copyright © 2015 Pearson. All rights reserved. 1-44

Guarded Commands: Rationale

• Connection between control statements
and program verification is intimate

• Verification is impossible with goto
statements

• Verification is possible with only selection
and logical pretest loops

• Verification is relatively simple with only
guarded commands

Copyright © 2015 Pearson. All rights reserved. 1-45

Conclusions

• Variety of statement-level structures

• Choice of control statements beyond
selection and logical pretest loops is a
trade-off between language size and
writability

• Functional and logic programming
languages use quite different control
structures

	Slide 1: Chapter 8
	Slide 2: Chapter 8 Topics
	Slide 3: Levels of Control Flow
	Slide 4: Control Statements: Evolution
	Slide 5: Control Structure
	Slide 6: Selection Statements
	Slide 7: Two-Way Selection Statements
	Slide 8: The Control Expression
	Slide 9: Clause Form
	Slide 10: Nesting Selectors
	Slide 11: Nesting Selectors (continued)
	Slide 12: Nesting Selectors (continued)
	Slide 13: Nesting Selectors (continued)
	Slide 14: Selector Expressions
	Slide 15: Multiple-Way Selection Statements
	Slide 16: Multiple-Way Selection: Examples
	Slide 17: Multiple-Way Selection: Examples
	Slide 18: Multiple-Way Selection: Examples
	Slide 19
	Slide 20: Implementing Multiple Selectors
	Slide 21: Multiple-Way Selection Using if
	Slide 22: Multiple-Way Selection Using if
	Slide 23: Scheme’s Multiple Selector
	Slide 24: Iterative Statements
	Slide 25: Counter-Controlled Loops
	Slide 26: Counter-Controlled Loops: Examples
	Slide 27: Counter-Controlled Loops: Examples
	Slide 28: Counter-Controlled Loops: Examples
	Slide 29: Counter-Controlled Loops: Examples
	Slide 30: Logically-Controlled Loops
	Slide 31: Logically-Controlled Loops: Examples
	Slide 32: Logically-Controlled Loops: Examples
	Slide 33: User-Located Loop Control Mechanisms
	Slide 34: User-Located Loop Control Mechanisms
	Slide 35: Iteration Based on Data Structures
	Slide 36: Iteration Based on Data Structures (continued)
	Slide 37
	Slide 38: Iteration Based on Data Structures (continued)
	Slide 39: Iteration Based on Data Structures (continued)
	Slide 40: Unconditional Branching
	Slide 41: Guarded Commands
	Slide 42: Selection Guarded Command
	Slide 43: Loop Guarded Command
	Slide 44: Guarded Commands: Rationale
	Slide 45: Conclusions

