
ISBN 0-321-49362-1

Chapter 9

Subprograms

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 9 Topics

• Introduction

• Fundamentals of Subprograms

• Design Issues for Subprograms

• Local Referencing Environments

• Parameter-Passing Methods

• Parameters That Are Subprograms

• Calling Subprograms Indirectly

• Design Issues for Functions

• Overloaded Subprograms

• Generic Subprograms

• User-Defined Overloaded Operators

• Closures

• Coroutines

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction

• Two fundamental abstraction facilities

– Process abstraction

• Emphasized from early days

• Discussed in this chapter

– Data abstraction

• Emphasized in the1980s

• Discussed at length in Chapter 11

Copyright © 2015 Pearson. All rights reserved. 1-4

Fundamentals of Subprograms

• Each subprogram has a single entry point

• The calling program is suspended during
execution of the called subprogram

• Control always returns to the caller when
the called subprogram’s execution
terminates

Copyright © 2015 Pearson. All rights reserved. 1-5

Basic Definitions

• A subprogram definition describes the interface to and the
actions of the subprogram abstraction
– In Python, function definitions are executable; in all other languages,

they are non-executable

– In Ruby, function definitions can appear either in or outside of class
definitions. If outside, they are methods of Object. They can be called
without an object, like a function

– In Lua, all functions are anonymous

• A subprogram call is an explicit request that the subprogram
be executed

• A subprogram header is the first part of the definition,
including the name, the kind of subprogram, and the formal
parameters

• The parameter profile (aka signature) of a subprogram is the
number, order, and types of its parameters

• The protocol is a subprogram’s parameter profile and, if it is
a function, its return type

Copyright © 2015 Pearson. All rights reserved. 1-6

Basic Definitions (continued)

• Function declarations in C and C++ are often
called prototypes

• A subprogram declaration provides the protocol,
but not the body, of the subprogram

• A formal parameter is a dummy variable listed in
the subprogram header and used in the
subprogram

• An actual parameter represents a value or address
used in the subprogram call statement

Copyright © 2015 Pearson. All rights reserved. 1-7

Actual/Formal Parameter
Correspondence

• Positional

– The binding of actual parameters to formal parameters is
by position: the first actual parameter is bound to the first
formal parameter and so forth

– Safe and effective

• Keyword

– The name of the formal parameter to which an actual
parameter is to be bound is specified with the actual
parameter

– Advantage: Parameters can appear in any order, thereby
avoiding parameter correspondence errors

– Disadvantage: User must know the formal parameter’s
names

Copyright © 2015 Pearson. All rights reserved. 1-8

Formal Parameter Default Values

• In certain languages (e.g., C++, Python, Ruby, PHP), formal
parameters can have default values (if no actual parameter is
passed)

– In C++, default parameters must appear last because
parameters are positionally associated (no keyword parameters)

• Variable numbers of parameters
– C# methods can accept a variable number of parameters

as long as they are of the same type—the corresponding
formal parameter is an array preceded by params

– In Ruby, the actual parameters are sent as elements of a
hash literal and the corresponding formal parameter is
preceded by an asterisk.

Variable Numbers of Parameters
(continued)

– In Python, the actual is a list of values and the
corresponding formal parameter is a name with an
asterisk

– In Lua, a variable number of parameters is represented as
a formal parameter with three periods; they are accessed
with a for statement or with a multiple assignment from
the three periods

Copyright © 2015 Pearson. All rights reserved. 1-9

Copyright © 2015 Pearson. All rights reserved. 1-10

Procedures and Functions

• There are two categories of subprograms

– Procedures are collection of statements that
define parameterized computations

– Functions structurally resemble procedures but
are semantically modeled on mathematical
functions

• They are expected to produce no side effects

• In practice, program functions have side effects

Copyright © 2015 Pearson. All rights reserved. 1-11

Design Issues for Subprograms

• Are local variables static or dynamic?

• Can subprogram definitions appear in other subprogram
definitions?

• What parameter passing methods are provided?

• Are parameter types checked?

• If subprograms can be passed as parameters and subprograms can
be nested, what is the referencing environment of a passed
subprogram?

• Are functional side effects allowed?

• What types of values can be returned from functions?

• How many values can be returned from functions?

• Can subprograms be overloaded?

• Can subprogram be generic?

• If the language allows nested subprograms, are closures supported?

Copyright © 2015 Pearson. All rights reserved. 1-12

Local Referencing Environments

• Local variables can be stack-dynamic

 - Advantages

• Support for recursion

• Storage for locals is shared among some subprograms

– Disadvantages

• Allocation/de-allocation, initialization time

• Indirect addressing

• Subprograms cannot be history sensitive

• Local variables can be static

– Advantages and disadvantages are the opposite of those
for stack-dynamic local variables

Local Referencing Environments: Examples

• In most contemporary languages, locals are
stack dynamic

• In C-based languages, locals are by default
stack dynamic, but can be declared static

• The methods of C++, Java, Python, and C#
only have stack dynamic locals

• In Lua, all implicitly declared variables are
global; local variables are declared with
local and are stack dynamic

Copyright © 2015 Pearson. All rights reserved. 1-13

Copyright © 2015 Pearson. All rights reserved. 1-14

Semantic Models of Parameter Passing

• In mode

• Out mode

• Inout mode

Copyright © 2015 Pearson. All rights reserved. 1-15

Models of Parameter Passing

Copyright © 2015 Pearson. All rights reserved. 1-16

Conceptual Models of Transfer

• Physically move a value

• Move an access path to a value

Copyright © 2015 Pearson. All rights reserved. 1-17

Pass-by-Value (In Mode)

• The value of the actual parameter is used to
initialize the corresponding formal parameter

– Normally implemented by copying

– Can be implemented by transmitting an access path but
not recommended (enforcing write protection is not easy)

– Disadvantages (if by physical move): additional storage is
required (stored twice) and the actual move can be costly
(for large parameters)

– Disadvantages (if by access path method): must write-
protect in the called subprogram and accesses cost more
(indirect addressing)

Copyright © 2015 Pearson. All rights reserved. 1-18

Pass-by-Result (Out Mode)

• When a parameter is passed by result, no
value is transmitted to the subprogram; the
corresponding formal parameter acts as a
local variable; its value is transmitted to
caller’s actual parameter when control is
returned to the caller, by physical move
– Require extra storage location and copy

operation

• Potential problems:
– sub(p1, p1); whichever formal parameter is

copied back will represent the current value of p1

– sub(list[sub], sub); Compute address of list[sub] at
the beginning of the subprogram or end?

Copyright © 2015 Pearson. All rights reserved. 1-19

Pass-by-Value-Result (inout Mode)

• A combination of pass-by-value and
pass-by-result

• Sometimes called pass-by-copy

• Formal parameters have local storage

• Disadvantages:

– Those of pass-by-result

– Those of pass-by-value

Copyright © 2015 Pearson. All rights reserved. 1-20

Pass-by-Reference (Inout Mode)

• Pass an access path

• Also called pass-by-sharing

• Advantage: Passing process is efficient (no
copying and no duplicated storage)

• Disadvantages

– Slower accesses (compared to pass-by-value) to
formal parameters

– Potentials for unwanted side effects (collisions)

– Unwanted aliases (access broadened)
 fun(total, total); fun(list[i], list[j]; fun(list[i], i);

Copyright © 2015 Pearson. All rights reserved. 1-21

Pass-by-Name (Inout Mode)

• By textual substitution

• Formals are bound to an access method at
the time of the call, but actual binding to a
value or address takes place at the time of
a reference or assignment

• Allows flexibility in late binding

• Implementation requires that the
referencing environment of the caller is
passed with the parameter, so the actual
parameter address can be calculated

Copyright © 2015 Pearson. All rights reserved. 1-22

Implementing Parameter-Passing Methods

• In most languages parameter
communication takes place thru the run-
time stack

• Pass-by-reference are the simplest to
implement; only an address is placed in the
stack

Implementing Parameter-Passing Methods

Copyright © 2015 Pearson. All rights reserved. 1-23

Function header: void sub(int a, int b, int c, int d)
Function call in main: sub(w, x, y, z)
(pass w by value, x by result, y by value-result, z by reference)

Copyright © 2015 Pearson. All rights reserved. 1-24

Parameter Passing Methods of Major
Languages

• C
– Pass-by-value

– Pass-by-reference is achieved by using pointers as parameters

• C++
– A special pointer type called reference type for pass-by-

reference

• Java
– All parameters are passed are passed by value

– Object parameters are passed by reference

Copyright © 2015 Pearson. All rights reserved. 1-25

Parameter Passing Methods of Major
Languages (continued)

• Fortran 95+
- Parameters can be declared to be in, out, or inout mode

• C#
- Default method: pass-by-value

– Pass-by-reference is specified by preceding both a formal
parameter and its actual parameter with ref

• PHP: very similar to C#, except that either the
actual or the formal parameter can specify ref

• Perl: all actual parameters are implicitly placed in a
predefined array named @_

• Python and Ruby use pass-by-assignment (all data
values are objects); the actual is assigned to the
formal

Copyright © 2015 Pearson. All rights reserved. 1-26

Type Checking Parameters

• Considered very important for reliability

• FORTRAN 77 and original C: none

• Pascal and Java: it is always required

• ANSI C and C++: choice is made by the user

– Prototypes

• Relatively new languages Perl, JavaScript, and PHP
do not require type checking

• In Python and Ruby, variables do not have types
(objects do), so parameter type checking is not
possible

Copyright © 2015 Pearson. All rights reserved. 1-27

Multidimensional Arrays as Parameters

• If a multidimensional array is passed to a
subprogram and the subprogram is
separately compiled, the compiler needs to
know the declared size of that array to
build the storage mapping function

Copyright © 2015 Pearson. All rights reserved. 1-28

Multidimensional Arrays as Parameters:
C and C++

• Programmer is required to include the
declared sizes of all but the first subscript
in the actual parameter

• Disallows writing flexible subprograms

• Solution: pass a pointer to the array and the
sizes of the dimensions as other
parameters; the user must include the
storage mapping function in terms of the
size parameters

Copyright © 2015 Pearson. All rights reserved. 1-29

Multidimensional Arrays as Parameters:
Java and C#

• Similar to Ada

• Arrays are objects; they are all single-
dimensioned, but the elements can be
arrays

• Each array inherits a named constant (length
in Java, Length in C#) that is set to the length
of the array when the array object is
created

Copyright © 2015 Pearson. All rights reserved. 1-30

Design Considerations for Parameter
Passing

• Two important considerations

– Efficiency

– One-way or two-way data transfer

• But the above considerations are in conflict

– Good programming suggest limited access to
variables, which means one-way whenever
possible

– But pass-by-reference is more efficient to pass
structures of significant size

Copyright © 2015 Pearson. All rights reserved. 1-31

Parameters that are Subprogram
Names
• It is sometimes convenient to pass

subprogram names as parameters

• Issues:

1. Are parameter types checked?

2. What is the correct referencing environment for
a subprogram that was sent as a parameter?

Copyright © 2015 Pearson. All rights reserved. 1-32

Parameters that are Subprogram
Names: Referencing Environment

• Shallow binding: The environment of the
call statement that enacts the passed
subprogram
- Most natural for dynamic-scoped

 languages

• Deep binding: The environment of the
definition of the passed subprogram
- Most natural for static-scoped languages

• Ad hoc binding: The environment of the call
statement that passed the subprogram

Calling Subprograms Indirectly

• Usually when there are several possible
subprograms to be called and the correct
one on a particular run of the program is
not know until execution (e.g., event
handling and GUIs)

• In C and C++, such calls are made through
function pointers

Copyright © 2015 Pearson. All rights reserved. 1-33

Calling Subprograms Indirectly (continued)

• In C#, method pointers are implemented as
objects called delegates
– A delegate declaration:

 public delegate int Change(int x);

 - This delegate type, named Change, can be
instantiated with any method that takes an int
parameter and returns an int value

 A method: static int fun1(int x) { … }

 Instantiate: Change chgfun1 = new Change(fun1);

 Can be called with: chgfun1(12);

 - A delegate can store more than one address,
which is called a multicast delegate

Copyright © 2015 Pearson. All rights reserved. 1-34

Design Issues for Functions

• Are side effects allowed?

– Parameters should always be in-mode to reduce side
effect (like Ada)

• What types of return values are allowed?

– Most imperative languages restrict the return types

– C allows any type except arrays and functions

– C++ is like C but also allows user-defined types

– Java and C# methods can return any type (but because
methods are not types, they cannot be returned)

– Python and Ruby treat methods as first-class objects, so
they can be returned, as well as any other class

– Lua allows functions to return multiple values

Copyright © 2015 Pearson. All rights reserved. 1-35

Copyright © 2015 Pearson. All rights reserved. 1-36

Overloaded Subprograms

• An overloaded subprogram is one that has the
same name as another subprogram in the same
referencing environment
– Every version of an overloaded subprogram has a unique

protocol

• C++, Java, C#, and Ada include predefined
overloaded subprograms

• In Ada, the return type of an overloaded function
can be used to disambiguate calls (thus two
overloaded functions can have the same
parameters)

• Ada, Java, C++, and C# allow users to write
multiple versions of subprograms with the same
name

Copyright © 2015 Pearson. All rights reserved. 1-37

Generic Subprograms

• A generic or polymorphic subprogram takes
parameters of different types on different
activations

• Overloaded subprograms provide ad hoc
polymorphism

• Subtype polymorphism means that a variable of
type T can access any object of type T or any type
derived from T (OOP languages)

• A subprogram that takes a generic parameter that
is used in a type expression that describes the type
of the parameters of the subprogram provides
parametric polymorphism
 - A cheap compile-time substitute for dynamic
binding

Generic Subprograms (continued)

• C++

– Versions of a generic subprogram are created
implicitly when the subprogram is named in a
call or when its address is taken with the &
operator

– Generic subprograms are preceded by a
template clause that lists the generic variables,
which can be type names or class names

 template <class Type>

 Type max(Type first, Type second) {

 return first > second ? first : second;

 }

Copyright © 2015 Pearson. All rights reserved. 1-38

Copyright © 2015 Pearson. All rights reserved. 1-39

Generic Subprograms (continued)

• Java 5.0
- Differences between generics in Java 5.0 and
those of C++:
1. Generic parameters in Java 5.0 must be classes

 2. Java 5.0 generic methods are instantiated just
once as truly generic methods
3. Restrictions can be specified on the range of
classes that can be passed to the generic method
as generic parameters
4. Wildcard types of generic parameters

Generic Subprograms (continued)

• Java 5.0 (continued)

 public static <T> T doIt(T[] list) { … }

 - The parameter is an array of generic elements
(T is the name of the type)

 - A call:

 doIt<String>(myList);

Generic parameters can have bounds:

 public static <T extends Comparable> T

 doIt(T[] list) { … }

The generic type must be of a class that
implements the Comparable interface

Copyright © 2015 Pearson. All rights reserved. 1-40

Generic Subprograms (continued)

• Java 5.0 (continued)

– Wildcard types

 Collection<?> is a wildcard type for collection
classes

 void printCollection(Collection<?> c) {

 for (Object e: c) {

 System.out.println(e);

 }

 }

 - Works for any collection class

Copyright © 2015 Pearson. All rights reserved. 1-41

Copyright © 2015 Pearson. All rights reserved. 1-42

Generic Subprograms (continued)

• C# 2005
- Supports generic methods that are similar to

those of Java 5.0
- One difference: actual type parameters in a call
can be omitted if the compiler can infer the
unspecified type

– Another – C# 2005 does not support wildcards

Generic Subprograms (continued)

• F#

– Infers a generic type if it cannot determine the
type of a parameter or the return type of a
function – automatic generalization

– Such types are denoted with an apostrophe and
a single letter, e.g., ′a

– Functions can be defined to have generic
parameters

 let printPair (x: ′a) (y: ′a) =

 printfn ″%A %A″ x y

 - %A is a format code for any type

 - These parameters are not type constrained

Copyright © 2015 Pearson. All rights reserved. 1-43

Generic Subprograms (continued)

• F# (continued)

– If the parameters of a function are used with
arithmetic operators, they are type constrained,
even if the parameters are specified to be
generic

– Because of type inferencing and the lack of type
coercions, F# generic functions are far less
useful than those of C++, Java 5.0+, and C#
2005+

Copyright © 2015 Pearson. All rights reserved. 1-44

Copyright © 2015 Pearson. All rights reserved. 1-45

User-Defined Overloaded
Operators

• Operators can be overloaded in Ada, C++,
Python, and Ruby

• A Python example
def __add__ (self, second) :

 return Complex(self.real + second.real,

 self.imag + second.imag)

Use: To compute x + y, x.__add__(y)

Closures

• A closure is a subprogram and the
referencing environment where it was
defined
– The referencing environment is needed if the subprogram

can be called from any arbitrary place in the program

– A static-scoped language that does not permit nested
subprograms doesn’t need closures

– Closures are only needed if a subprogram can access
variables in nesting scopes and it can be called from
anywhere

– To support closures, an implementation may need to
provide unlimited extent to some variables (because a
subprogram may access a nonlocal variable that is
normally no longer alive)

Copyright © 2015 Pearson. All rights reserved. 1-46

Closures (continued)

• A JavaScript closure:

 function makeAdder(x) {
 return function(y) {return x + y;}

 }

 ...

 var add10 = makeAdder(10);

 var add5 = makeAdder(5);

 document.write(″add 10 to 20: ″ + add10(20) +

 ″
″);

 document.write(″add 5 to 20: ″ + add5(20) +

 ″
″);

 - The closure is the anonymous function returned
by makeAdder

Copyright © 2015 Pearson. All rights reserved. 1-47

Closures (continued)

• C#
- We can write the same closure in C# using a nested

anonymous delegate

- Func<int, int> (the return type) specifies a delegate
that takes an int as a parameter and returns and int

 static Func<int, int> makeAdder(int x) {
 return delegate(int y) {return x + y;};

 }

 ...

 Func<int, int> Add10 = makeAdder(10);

 Func<int, int> Add5 = makeAdder(5);

 Console.WriteLine(″Add 10 to 20: {0}″, Add10(20));

 Console.WriteLine(″Add 5 to 20: {0}″, Add5(20));

Copyright © 2015 Pearson. All rights reserved. 1-48

Copyright © 2015 Pearson. All rights reserved. 1-49

Coroutines

• A coroutine is a subprogram that has multiple
entries and controls them itself – supported
directly in Lua

• Also called symmetric control: caller and called
coroutines are on a more equal basis

• A coroutine call is named a resume

• The first resume of a coroutine is to its beginning,
but subsequent calls enter at the point just after
the last executed statement in the coroutine

• Coroutines repeatedly resume each other, possibly
forever

• Coroutines provide quasi-concurrent execution of
program units (the coroutines); their execution is
interleaved, but not overlapped

Copyright © 2015 Pearson. All rights reserved. 1-50

Coroutines Illustrated: Possible
Execution Controls

Copyright © 2015 Pearson. All rights reserved. 1-51

Coroutines Illustrated: Possible
Execution Controls

Copyright © 2015 Pearson. All rights reserved. 1-52

Coroutines Illustrated: Possible
Execution Controls with Loops

Copyright © 2015 Pearson. All rights reserved. 1-53

Summary

• A subprogram definition describes the actions
represented by the subprogram

• Subprograms can be either functions or
procedures

• Local variables in subprograms can be stack-
dynamic or static

• Three models of parameter passing: in mode, out
mode, and inout mode

• Some languages allow operator overloading

• Subprograms can be generic

• A closure is a subprogram and its ref. environment

• A coroutine is a special subprogram with multiple
entries

	Slide 1: Chapter 9
	Slide 2: Chapter 9 Topics
	Slide 3: Introduction
	Slide 4: Fundamentals of Subprograms
	Slide 5: Basic Definitions
	Slide 6: Basic Definitions (continued)
	Slide 7: Actual/Formal Parameter Correspondence
	Slide 8: Formal Parameter Default Values
	Slide 9: Variable Numbers of Parameters (continued)
	Slide 10: Procedures and Functions
	Slide 11: Design Issues for Subprograms
	Slide 12: Local Referencing Environments
	Slide 13: Local Referencing Environments: Examples
	Slide 14: Semantic Models of Parameter Passing
	Slide 15: Models of Parameter Passing
	Slide 16: Conceptual Models of Transfer
	Slide 17: Pass-by-Value (In Mode)
	Slide 18: Pass-by-Result (Out Mode)
	Slide 19: Pass-by-Value-Result (inout Mode)
	Slide 20: Pass-by-Reference (Inout Mode)
	Slide 21: Pass-by-Name (Inout Mode)
	Slide 22: Implementing Parameter-Passing Methods
	Slide 23: Implementing Parameter-Passing Methods
	Slide 24: Parameter Passing Methods of Major Languages
	Slide 25: Parameter Passing Methods of Major Languages (continued)
	Slide 26: Type Checking Parameters
	Slide 27: Multidimensional Arrays as Parameters
	Slide 28: Multidimensional Arrays as Parameters: C and C++
	Slide 29: Multidimensional Arrays as Parameters: Java and C#
	Slide 30: Design Considerations for Parameter Passing
	Slide 31: Parameters that are Subprogram Names
	Slide 32: Parameters that are Subprogram Names: Referencing Environment
	Slide 33: Calling Subprograms Indirectly
	Slide 34: Calling Subprograms Indirectly (continued)
	Slide 35: Design Issues for Functions
	Slide 36: Overloaded Subprograms
	Slide 37: Generic Subprograms
	Slide 38: Generic Subprograms (continued)
	Slide 39: Generic Subprograms (continued)
	Slide 40: Generic Subprograms (continued)
	Slide 41: Generic Subprograms (continued)
	Slide 42: Generic Subprograms (continued)
	Slide 43: Generic Subprograms (continued)
	Slide 44: Generic Subprograms (continued)
	Slide 45: User-Defined Overloaded Operators
	Slide 46: Closures
	Slide 47: Closures (continued)
	Slide 48: Closures (continued)
	Slide 49: Coroutines
	Slide 50: Coroutines Illustrated: Possible Execution Controls
	Slide 51: Coroutines Illustrated: Possible Execution Controls
	Slide 52: Coroutines Illustrated: Possible Execution Controls with Loops
	Slide 53: Summary

