
© 2015 Goodrich and Tamassia Maximum Flow 1

Maximum Flow

w
s

v

u

t

z

3/3

1/9

1/1

3/3

4/7

4/6

3/5
1/13/5

2/2

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia Maximum Flow 2

Flow Network
A flow network (or just network) N consists of
◼ A weighted digraph G with nonnegative integer edge weights,

where the weight of an edge e is called the capacity c(e) of e

◼ Two distinguished vertices, s and t of G, called the source and sink,
respectively, such that s has no incoming edges and t has no
outgoing edges.

Example:

w
s

v

u

t

z

3

9

1

3

7

6

51
5

2

© 2015 Goodrich and Tamassia Maximum Flow 3

Flow
A flow f for a network N is is an assignment of an integer value
f(e) to each edge e that satisfies the following properties:

Capacity Rule: For each edge e, 0 f (e) c(e)

Conservation Rule: For each vertex v s,t

where E−(v) and E+(v) are the incoming and outgoing edges of v, resp.

The value of a flow f , denoted |f|, is the total flow from the source,
which is the same as the total flow into the sink

Example:

+−

=
)()(

)()(
vEevEe

efef

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

© 2015 Goodrich and Tamassia Maximum Flow 4

Maximum Flow
A flow for a network N is

said to be maximum if its
value is the largest of all
flows for N

The maximum flow
problem consists of
finding a maximum flow
for a given network N

Applications

◼ Hydraulic systems

◼ Electrical circuits

◼ Traffic movements

◼ Freight transportation

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

w
s

v

u

t

z

3/3

2/9

1/1

3/3

3/7

4/6

4/51/1
3/5

2/2

Flow of value 8 = 2 + 3 + 3 = 1 + 3 + 4

Maximum flow of value 10 = 4 + 3 + 3 = 3 + 3 + 4

© 2015 Goodrich and Tamassia Maximum Flow 5

Cut
A cut of a network N with source s
and sink t is a partition = (Vs,Vt)
of the vertices of N such that s
Vs and t Vt

◼ Forward edge of cut : origin in Vs
and destination in Vt

◼ Backward edge of cut : origin in
Vt and destination in Vs

Flow f() across a cut : total flow
of forward edges minus total flow
of backward edges

Capacity c() of a cut : total
capacity of forward edges

Example:
◼ c() = 24

◼ f() = 8

w
s

v

u

t

z

3

9

1

3

7

6

51
5

2

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

© 2015 Goodrich and Tamassia Maximum Flow 6

Flows and Cuts
Lemma:

 The flow f() across any
cut is equal to the flow
value |f|

Lemma:

 The flow f() across a cut
 is less than or equal to
the capacity c() of the cut

Theorem:

 The value of any flow is
less than or equal to the
capacity of any cut, i.e.,
for any flow f and any cut
, we have
 |f| c()

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/5
1/13/5

2/2

1 2

c(1) = 12 = 6 + 3 + 1 + 2

c(2) = 21 = 3 + 7 + 9 + 2

|f| = 8

© 2015 Goodrich and Tamassia Maximum Flow 7

Augmenting Path
Consider a flow f for a
network N

Let e be an edge from u to v:
◼ Residual capacity of e from

u to v: f(u, v) = c(e) − f (e)

◼ Residual capacity of e from
v to u: f(v, u) = f (e)

Let be a path from s to t
◼ The residual capacity f()

of is the smallest of the
residual capacities of the
edges of in the direction
from s to t

A path from s to t is an
augmenting path if f() 0

w
s

v

u

t

z

3/3

2/9

1/1

1/3

2/7

2/6

4/5
0/12/5

2/2

f(s,u) = 3

f(u,w) = 1

f(w,v) = 1

f(v,t) = 2

f() = 1

|f| = 7

© 2015 Goodrich and Tamassia Maximum Flow 8

Flow Augmentation
Lemma:

 Let be an augmenting path
for flow f in network N. There
exists a flow f for N of value
 | f | = |f | + f()

 Proof:

 We compute flow f by

modifying the flow on the
edges of

◼ Forward edge:
 f (e) = f(e) + f()

◼ Backward edge:
 f (e) = f(e) − f()

w
s

v

u

t

z

3/3

2/9

1/1

1/3

2/7

2/6

4/5
0/12/5

2/2

f() = 1

w
s

v

u

t

z

3/3

2/9

0/1

2/3

2/7

2/6

4/5
1/13/5

2/2

| f | = 7

| f | = 8

© 2015 Goodrich and Tamassia Maximum Flow 9

The Ford-Fulkerson Algorithm
Initially, f(e) = 0 for each
edge e

Repeatedly

◼ Search for an
augmenting path

◼ Augment by f() the
flow along the edges
of

A specialization of DFS
(or BFS) searches for an
augmenting path

◼ An edge e is traversed
from u to v provided
f(u, v) 0

© 2015 Goodrich and Tamassia Maximum Flow 10

Max-Flow and Min-Cut
Termination of Ford-
Fulkerson’s algorithm
◼ There is no augmenting path

from s to t with respect to the
current flow f

Define
Vs set of vertices reachable from s

by augmenting paths

Vt set of remaining vertices

Cut = (Vs,Vt) has capacity
 c() = |f|
◼ Forward edge: f(e) = c(e)

◼ Backward edge: f(e) = 0

Thus, flow f has maximum
value and cut has minimum
capacity

w
s

v

u

t

z

3/3

1/9

1/1

3/3

4/7

4/6

3/5
1/13/5

2/2

Theorem:

The value of a maximum
flow is equal to the
capacity of a minimum cut

c() = | f | = 10

© 2015 Goodrich and Tamassia Maximum Flow 11

Example (1)

w
s

v

u

t

z

0/3

0/9

0/1

0/3

1/7

0/6

0/5
1/11/5

0/2

w
s

v

u

t

z

1/3

0/9

0/1

0/3

1/7

0/6

1/5
0/11/5

1/2

w
s

v

u

t

z

1/3

0/9

1/1

0/3

2/7

1/6

1/5
0/11/5

1/2

w
s

v

u

t

z

2/3

0/9

0/1

1/3

2/7

1/6

1/5
0/11/5

1/2

© 2015 Goodrich and Tamassia Maximum Flow 12

Example (2)

w
s

v

u

t

z

2/3

0/9

0/1

3/3

2/7

3/6

1/5
0/11/5

1/2

w
s

v

u

t

z

3/3

1/9

0/1

3/3

2/7

3/6

2/5
0/11/5

1/2

w
s

v

u

t

z

3/3

1/9

1/1

3/3

3/7

4/6

2/5
0/11/5

1/2

w
s

v

u

t

z

3/3

1/9

1/1

3/3

4/7

4/6

3/5
1/13/5

2/2

two steps

© 2015 Goodrich and Tamassia Maximum Flow 13

Analysis
In the worst case, Ford-
Fulkerson’s algorithm
performs |f*| flow
augmentations, where f* is a
maximum flow

Example
◼ The augmenting paths found

alternate between 1 and 2

◼ The algorithm performs 100
augmentations

Finding an augmenting path
and augmenting the flow
takes O(n + m) time

The running time of Ford-
Fulkerson’s algorithm is
O(|f*|(n + m))

t
s

v

u

1/1

1/500/50

1/50 0/50

t
s

v

u

0/1

1/501/50

1/50 1/50

1

2

Maximum Bipartite Matching
In the maximum bipartite matching problem, we are
given a connected undirected graph with the following

properties:

◼ The vertices of G are partitioned into two sets, X and Y.

◼ Every edge of G has one endpoint in X and the other endpoint
in Y.

Such a graph is called a bipartite graph.

A matching in G is a set of edges that have no
endpoints in common—such a set “pairs” up vertices
in X with vertices in Y so that each vertex has at most

one “partner” in the other set.

The maximum bipartite matching problem is to find a
matching with the greatest number of edges.

© 2015 Goodrich and Tamassia Maximum Flow 14

Reduction to Max Flow

Given a flow f for H, we use f to define a set M of edges of G
using the rule that an edge e is in M whenever f(e) = 1.

© 2015 Goodrich and Tamassia Maximum Flow 15

Example and Analysis

Running time is O(nm), because G is
connected.

© 2015 Goodrich and Tamassia Maximum Flow 16

Baseball Elimination
Let T be a set of teams in a sports league, which, for
historical reasons, let us assume is baseball.

At any point during the season, each team, i, in T, will

have some number, wi, of wins, and will have some
number, gi, of games left to play.

The baseball elimination problem is to determine

whether it is possible for team i to finish the season in
first place, given the games it has already won and the
games it has left to play.

Note that this depends on more than just the number of

games left for team i, however; it also depends on the
respective schedules of team i and the other teams.

© 2015 Goodrich and Tamassia Maximum Flow 17

Baseball Elimination Example
Let gi,j denote the number of games remaining

between team i and team j, so that gi is the

sum, over all j, of the gi,j‘s.

© 2015 Goodrich and Tamassia Maximum Flow 18

Reduction to Max Flow

Let us assume no single team eliminates

team k (since this is easy to check).

© 2015 Goodrich and Tamassia Maximum Flow 19

Creating the Graph
To consider how a combination of teams and game
outcomes might eliminate team k, we create a graph,

G, that has as its vertices a source, s, a sink, t, and
the sets T′ and L. Then, let us include the following
edges in G:

© 2015 Goodrich and Tamassia Maximum Flow 20

Creating the Graph, Example

© 2015 Goodrich and Tamassia Maximum Flow 21

Intuition and Analysis

We can solve baseball elimination for any team in a set
of n teams by solving a single maximum flow problem

on a network with at most O(n2) vertices and edges.

© 2015 Goodrich and Tamassia Maximum Flow 22

	Slide 1: Maximum Flow
	Slide 2: Flow Network
	Slide 3: Flow
	Slide 4: Maximum Flow
	Slide 5: Cut
	Slide 6: Flows and Cuts
	Slide 7: Augmenting Path
	Slide 8: Flow Augmentation
	Slide 9: The Ford-Fulkerson Algorithm
	Slide 10: Max-Flow and Min-Cut
	Slide 11: Example (1)
	Slide 12: Example (2)
	Slide 13: Analysis
	Slide 14: Maximum Bipartite Matching
	Slide 15: Reduction to Max Flow
	Slide 16: Example and Analysis
	Slide 17: Baseball Elimination
	Slide 18: Baseball Elimination Example
	Slide 19: Reduction to Max Flow
	Slide 20: Creating the Graph
	Slide 21: Creating the Graph, Example
	Slide 22: Intuition and Analysis

