TeAeuTaia evnpépwan: 20/12/2024

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

\/

MevioTn Pon (Maximum Flow)

© 2015 Goodrich and Tamassia MeyioTn Pon 1

Pon Aiktuou (Network Flow)

'Eva dikTuo ponc (1 anAa dikTtuo) N anoteAsital ano:
= 'Eva OTCIG|JIO|J€VO KCITEUGUVO|J€VO YpAapo G PE Un apvnTleq
aKEPAIEC TIHEC WG Bapn akpwy, ornou To Bapoc kKabe akunc e
KaAgiTal xwpnTikoTNnTa c(e) Tou e.
= AUO OUYKEKPIMEVEC KOPUPEC s Kal t Tou G, ovopalovTal Nnyn
(source) kal kataBoBpa (sink), avTioToIxa, £T0I WOTE N S va PNV
EXEI EICEPXOPEVEC AKHEC KAl N t va PNV EXEI EEEPXOMEVEC AKEC.

[lapadelypa:

N
N

© 2015 Goodrich and Tamassia MeyioTn Pon

Pony (Flow)

J Ll 1]

€ Mia pon f yia €va dikTuo N gival n avabeon akepaiag TIPNG f(e) o kaBe
aKMn e Mou IKavornolei Toug akOAOUBoUC KavOVeC:

Kavovag xwpnTikoTNTag (capacity rule): Na kabes akun e, 0<f(e) <c(e)

N

Kavovac diarnpnong (conservation rule): MNa kGbe kopupn v s, t

D fe)=) f(e

ecE™(v) ecE* (v)
onou E-(v) kal E*(v) gival ol EI0EpXOUEVEC Kal Ol EEEPXOUEVEC AKHEG TNC V, AVTiOTOIXA.

H miun ponc f, nou cupBoAileTal pe |f|, €ival n cuvoAikn por ano To
source, kai €ivai n idia Je T OUVOAIKA por) aTo sink.
® [lapadeiypua:

© 2015 Goodrich and Tamassia MeyioTn Pon 3

MevioTn Pon (Maximum Flow)

Mia por o€ eva diktuo N
AEyeTal OTI €ival PEYIOTN av
N TIMA TNG €ival n
LEYAAUTEPN ano OAEC TIC
moavec poec Tou N.

4 To npoPAnpa WEYIOTNG PONG u 7
ouvIOTATAl OTNV EUPEON Pohpuemiun8=2+3+3=1+3+4
JIac JEYIoOTNC poNnC yia eva
dedopevo OikTuo N.

@ E@apuoyec

= YOpauAika ouoTnuaTa
s HAekTpIKG KUKAWPATA
= KukAho@opiakn kivnon

= MeTagopd SUNoPEUUATWY
PR ERIoRE Meyiotnpon peTiun 10=4+3+3=3+3+4

© 2015 Goodrich and Tamassia Meyiotn Pon 4

N

216

Toun (Cut)

#® Mia Toun evocg dikTUou N e source s
kal sink t ival pia diapepion (partition)
7= (Vi,V) Twv Kopupwv Tou N €10l
woTe s € V Kalt € V,

= Mia npoc Ta epnpoq aKun (forward
edge) TG TOMUNG z: a@eTnpia oTo V, Kal
MPOOPICHO OTO V,

= Mia npog Ta niow akun (backward
edge) TnG TOUNG z: apernpia aTo V, kai
MPOOPICHO OTO V,

Pon f(y) dlauEToOU TNG TOUNG ¥:
OUVOAIKN pon TWV NPoc Ta EUNPOG
KWV HEIOV TN OUVOAIKN por TwV
MNPOC TA NiICW AKPWV.

#® XwpnTiKOTNTA c(;() TNG TOMNG #: N
cuvo)\mn XO.)pI’]TIKOTI’]TCI TWV NPOC Ta
EUNPOC AKHWV.

T[apadeypa:

m C()=24=6+7+9+2
m f(x)=8=2-1+3+2+2

N
N

© 2015 Goodrich and Tamassia MeyioTn Pon

Poec kal Topeg

Anuua:
H pon f(y) diapEoou
OroIacdnroTe TOUNG ¥ Eival V4| X2
~ion pe TV TIpA TG ponG I |
Anpua:
H pon f(z) diapeoou TNG TOUNG
¥ €ival JIKpOTEPN 1) i0n ano
TNV XwPNTIKOTNTA ¢(¥) TNCG

N
N

TOHNG. ,
Ocwpnua:] 202\

H TIuf} 0noiaodnnoTe Porig ' \

Eval MIKPOTE ionano T

prn'l;llKgTﬂTgnOlr'I]OIGr(]Tﬁr]|'|OT2 C(r)=12=6+3+1+2

TONG, OAG., yia kaBe pon f kai C(x) =21=3+7+9+2

Kabe Toun g, 10XUEl fl=8

[Tl < c(z)

© 2015 Goodrich and Tamassia MeyioTn Pon

Enau&nuevn diadpoun
(augmenting path)

@ Ta wa pon f og €va diktuo N

4 'EoTw e pIa akun ano To u OTo V:

= YNOA&INOPEVN XWPNTIKOTNTA TNG
e ano TO U OTO V:
Aq{u, v) =c(e) — T (e)

= YNOAEINOUEVN XWPNTIKOTNTA TNC
e ano To v OTO U:
Aq(v, u) =T (e)

4 'EOTW 7z Mia diadpopn ano To s

N

OTO t
= H unoAsindpevn xwpnTiKOTNTA
A7) TNG dladpounc weival n g
HIKPOTEPN AMO TIG UNOAEINOMEVEG Af(U,W) =1
)é_(;)prmKOT'r]qu TWV AKPWV TNG 7 Af(W,V) =1
nv KaTteuBuvon ano To s OTOo t
4 Mia diadpoun z and To s oTO t A(v,t) =2
eival pia enauvénpevn diadpopn av A(nm) =1
A7) >0 f| =7

© 2015 Goodrich and Tamassia MeyioTn Pon 7

Enau&non Ponc (Flow
Augmentation)

Anupua:
'EOTW 7z pia enau€énuevn
diadpoun yia Tnv pon f oTo
dikTuo N. Ynapxel pia pon 7
yia To N JE TIUN
[T/ =1F | + A7)
AnodeiEn:
YnoAoyiloupe Tnv pon f’
TPOMOMOIWVTAC TN PON TWV
aKuwV TNC 7z
= AKpN Npoc Ta EUNPOC:
f7(e) =1(e) + A(n)
= AKUN NPoC Ta Niow:
f7(e) = f(e) — 4(7)

N

3/5

© 2015 Goodrich and Tamassia MeyioTn Pon 8

O AAyopIBuocC TwV

/R

@ Apxika, f(e) =0 yia kabe
akyn e
@ EnavaAnnTika:
= AvalnTnon piac

enauénuevng
d1adpoung =

= Enauv&non kata A(x)
TNC PONG MECW TWV
aKU®V TNG 7
@ Mia €Eeidikeupevn DFS
(n BFS) avalnta uia
enau&nuevn d1adpoun
= Mia akun e dIaTpeEXETal

ano To U OTO V EPpOCOV
A(u, v) >0

© 2015 Goodrich and Tamassia

Ford-Fulkerson

Algorithm MaxFlowFordFulkerson(N):
Input: Flow network N = (G, ¢, s, 1)
Output: A maximum flow f for N

for each edge e € N do
f(e) <0
stop « false
repeat
traverse G starting at s to find an augmenting path for f
if an augmenting path 7 exists then
/I Compute the residual capacity A ¢(m) of
A+ +oo
for eachedge e € m do
if Ar(e) <A then
A+ Ay(e)
for eachedge e € m do //push A = A () units along 7
if eisaforward edge then
fle) « fle) + A
else
f(e) « f(e) — A // e is a backward edge
else
stop +— true
until stop

/I f is a maximum flow

MeyioTn Pon 9

MevioTn-Pon (Max-Flow) kal
EAaxioTn-Toun (Min-Cut)

N
N

Ford-Fulkerson:

LE TNV TpEXouoa pon f
4 Opiopuoi:
V, 0UVOAO TWV KOPUPWV Mou

s M€ enau&nuevec dIadpoEC

V, oUVOAO KOpUP®V NOU anOKEVOUV

@ HToun = (V,V) €xel
XWPNTIKOTNTA

c(z) = If]

= Ak npoc Ta eunpoc: f(e) = c(e)

= Akun npog Ta niow: f(e) =0

€ 'ETOl1, n pon f £XEl MEYIOTN TIMNA Kal

N TOMN x EXEI EAAXIOTN
XWPNTIKOTNTA

© 2015 Goodrich and Tamassia

& TeppaTioPog Tou aAyopiBuou Twv

s 'Otav dev unapxsl enauv&nuevn
d1adpopn ano To s OTO t O OXEoN

HNOPOUV Va MPOCEyyIoTOUV ano To

MeyioTn Pon

Oswpnua:
H Tiur TG WeyIoTNG PongG
IoouUTal JE TNV
XWPNTIKOTNTA HIAg
EAC'IXIOTFICZTOHF'IC

12/2
/

c() = | f| =10

10

112

© 2015 Goodrich and Tamassia MeyioTn Pon

Mapadeiyua (2)

N

112

© 2015 Goodrich and Tamassia MeyioTn Pon

Avd)\ucrr]

@ 2Tnv XEIPOTEPN NEPINTWON, O
aAyopiBpoc Twwv Ford-
Fulkerson I'IpCIY|JCITOI'IOI€I]
enauEnoaq pooov onou f* eival
hia JEYIoTN pon.

[apadeiyua:

= O1 enau&nuévec d1adpopEC
Bpiokouv evaMAKTIKEG
avapeoa oTIC 4 Kal 7,

= O aA\yopiBpoc npayuaTonolei
100 enau&noeic

H eupeon piac enav&nuevng
6|c16p0|.|nq Kai n snauEnon NG
ponc naipvel O(n + m) Xpovo

® O YpOVOC EKTEAEONC TOU
aAyopiBpou Twv Ford-
Fulkerson’ s givar O(|f*|(n + m))

/\

© 2015 Goodrich and Tamassia MeyioTn Pon 13

Maximum Bipartite Matching

" @ In the maximum bipartite matching problem, we are
given a connected undirected graph with the following
properties:

= The vertices of G are partitioned into two sets, X and Y.
= Every edge of G has one endpoint in X and the other endpoint
inY.
Such a graph is called a bipartite graph.

A matching in G is a set of edges that have no
endpoints in common—such a set “pairs” up vertices
in X with vertices in Y so that each vertex has at most
one “partner” in the other set.

The maximum bipartite matching problem is to find a

matching with the greatest number of edges.
© 2015 Goodrich and Tamassia MeyioTn Pon 14

Reduction to Max Flow

N

Let G be a bipartite graph whose vertices are partitioned into sets X and Y. We
create a flow network H such that a maximum flow in H can be immediately con-
verted into a maximum matching in G:

e We begin by including all the vertices of G in H, plus a new source vertex s
and a new sink vertex ¢.

e Next, we add every edge of GG to H, but direct each such edge so that it is
oriented from the endpoint in X to the endpoint in Y. In addition, we insert
a directed edge from s to each vertex in X, and a directed edge from each
vertex in Y to . Finally, we assign to each edge of H a capacity of 1.

Given a flow f for H, we use f to define a set M of edges of G
using the rule that an edge e is in M whenever f(e) = 1.

© 2015 Goodrich and Tamassia MeyioTn Pon 15

Example and Analysis

Figure 16.11: (a) A bipartite graph G. (b) Flow network H derived from & and a
maximum flow in H ; thick edges have unit flow and other edges have zero flow.

N

#Running time is O(nm), because G is
connected.

© 2015 Goodrich and Tamassia MeyioTn Pon 16

Baseball Elimination

" @ Let T be a set of teams in a sports league, which, for
historical reasons, let us assume is baseball.

At any point during the season, each team, i, in T, will
have some number, w;, of wins, and will have some
number, g;, of games left to play.

The baseball elimination problem is to determine
whether it is possible for team i to finish the season in
first place, given the games it has already won and the
games it has left to play.

Note that this depends on more than just the number of
games left for team i, however; it also depends on the
respective schedules of team i and the other teams.

N

© 2015 Goodrich and Tamassia MeyioTn Pon 17

Baseball Elimination Example

@ Let g;; denote the number of games remaining
between team i and team j, so that g; is the
sum, over all j, of the g;;'s.

N

Team Wins | Games Left Schedule (g; ;)
i w; g; LA Oak Sea Tex
Los Angeles | 81 8 - I 6 1
Oakland 77 4 l - 0 3
Seattle 76 7 6 0 - 1
Texas 74 5 1 3 I -

Table 16.12: A set of teams, their standings, and their remaining schedule. Clearly,
Texas is eliminated from finishing in first place, since it can win at most 79 games.
In addition, even though it is currently in second place, Oakland is also eliminated,
because it can win at most 81 games, but in the remaining games between LA and
Seattle, either LA wins at least 1 game and finishes with at least 82 wins or Seattle
wins 6 games and finishes with at least 82 wins.

© 2015 Goodrich and Tamassia Maximum Flow 18

Reduction to Max Flow

N

With all the different ways for a team, k, to be eliminated, it might at first seem
like it is computationally infeasible to determine whether team k£ is eliminated.
Still, we can solve this problem by a reduction to a network flow problem. Let T”
denote the set of teams other than k, that is, 7" =T — {k}. Also, let L denote the
set of games that are left to play among teams in 7", that is,

L={{i,j}: i,7 € T and g; ; > 0}.
Finally, let W denote the largest number of wins that are possible for team £ given
the current standings, that is, W = wy + g;..

Let us assume no single team eliminates
team k (since this is easy to check).

© 2015 Goodrich and Tamassia MeyioTn Pon 19

Creating the Graph

" & To consider how a combination of teams and game
outcomes might eliminate team k, we create a graph,
G, that has as its vertices a source, s, a sink, t, and
the sets T’ and L. Then, let us include the following
edges in G:

N

e For each game pair, {i,j}, in L. add an edge (s, {7,j}). and give it capac-
ity gi,;.

e For each game pair, {7, j}, in L, add edges ({i, 5}, i) and ({1, j}, j), and
give these edges capacity +oo.

e Foreach team, 7, add an edge (i, t) and give it capacity W —w;, which cannot
be negative in this case, since we ruled out the case when W < w;.

© 2015 Goodrich and Tamassia MeyioTn Pon 20

Creating the Graph, Example

N

e For each game pair, {i,j}, in L. add an edge (s, {7,j}). and give it capac-
i[)" 9i.5-

e For each game pair, {7, j}, in L, add edges ({i, 5}, i) and ({1, j}, j), and
give these edges capacity +oo.

e Foreach team, 7, add an edge (i, t) and give it capacity W —w;, which cannot
be negative in this case, since we ruled out the case when W < w;.

(GGame nodes Team nodes

© 2015 Goodrich and Tamassia MeyioTn Pon) 21

Intuition and Analysis

N

The intuition behind the construction for G is that wins flow out from the |
source, s, are split at each game node, {, j}. to allocate wins between each pair |
of teams, i and j, and then are absorbed by the sink. ¢. The flow on each edge. |
({i,7}, i), represents the number of games in which team 7 beats j, and the flow on
each edge, (i,t), represents the number of remaining games that could be won by |
team 7. Thus, maximizing the flow in G is equivalent to testing if it is possible to |
allocate wins among all the remaining games not involving team k& so that no team
goes above W wins. So we compute a maximum flow for G.

We can solve baseball elimination for any team in a set
of n teams by solving a single maximum flow problem
on a network with at most O(n?) vertices and edges.

© 2015 Goodrich and Tamassia MeyioTn Pon 22

	Slide 1: Μέγιστη Ροή (Maximum Flow)
	Slide 2: Ροή Δικτύου (Network Flow)
	Slide 3: Ροή (Flow)
	Slide 4: Μέγιστη Ροή (Maximum Flow)
	Slide 5: Τομή (Cut)
	Slide 6: Ροές και Τομές
	Slide 7: Επαυξημένη διαδρομή (augmenting path)
	Slide 8: Επαύξηση Ροής (Flow Augmentation)
	Slide 9: Ο Αλγόριθμος των Ford-Fulkerson
	Slide 10: Μέγιστη-Ροή (Max-Flow) και Ελάχιστη-Τομή (Min-Cut)
	Slide 11: Παράδειγμα (1)
	Slide 12: Παράδειγμα (2)
	Slide 13: Ανάλυση
	Slide 14: Maximum Bipartite Matching
	Slide 15: Reduction to Max Flow
	Slide 16: Example and Analysis
	Slide 17: Baseball Elimination
	Slide 18: Baseball Elimination Example
	Slide 19: Reduction to Max Flow
	Slide 20: Creating the Graph
	Slide 21: Creating the Graph, Example
	Slide 22: Intuition and Analysis

